狠狠综合久久久久综合网址-a毛片网站-欧美啊v在线观看-中文字幕久久熟女人妻av免费-无码av一区二区三区不卡-亚洲综合av色婷婷五月蜜臀-夜夜操天天摸-a级在线免费观看-三上悠亚91-国产丰满乱子伦无码专区-视频一区中文字幕-黑人大战欲求不满人妻-精品亚洲国产成人蜜臀av-男人你懂得-97超碰人人爽-五月丁香六月综合缴情在线

代寫 CSCI1440/2440 Homework 3

時間:2024-02-16  來源:  作者: 我要糾錯


Homework 3: Myerson’s Lemma CSCI1440/2440

2024-02-08

Due Date: Tuesday, February 20, 2024. 11:59 PM.

We encourage you to work in groups of size two. Each group need only submit one solution. Your submission must be typeset using LATEX. Please submit via Gradescope with you and your partner’s Banner ID’s and which course you are taking.

For 1000-level credit, you need only solve the first three problems. For 2000-level credit, you should solve all four problems.

1 The All-Pay Auction

In an all-pay auction, the good is awarded to the highest bidder, but rather than only the winner paying, all bidders i must pay their bid: i.e., ui = vixi − pi.

Using the envelope theorem, derive (necessary conditions on) the symmetric equilibrium of a symmetric all-pay auction in which the bidders’ values are drawn i.i.d. from some bounded distribution F.

2 Allocation Rule Discontinuity

Fix a bidder i and a profile v−i. Myerson’s lemma tells us that incen-

tive compatibility and individual rationality imply two properties: 1. Allocation monotonicity: one’s allocation should not decrease as

 one’s value vi increases.

2. Myerson’s payment formula:

Z vi 0

pi(vi,v−i) = vixi(vi,v−i)−

xi(z,v−i)dz,

∀i ∈ [n],∀vi ∈ Ti,∀v−i ∈ T−i. (1)

In a second-price auction, the allocation rule is piecewise constant on any continuous interval. That is, bidder i’s allocation function is a Heaviside step function,1 with discontinuity at vi = b∗, where b∗ is the highest bid among all bidders other than i (i.e., b∗ = maxj̸=i vj):

1, if vi ≥ b∗ xi(vi,v−i) =

0, otherwise. Observe that ties are broken in favor of bidder i.

1 This is the canonical step function, whose range is [0, 1].

 

Given this allocation rule, the payment formula tells us what i should pay, should they be fortunate enough to win:

Z vi 0

pi(vi,v−i) = vixi(vi,v−i)−

?Z b∗

xi(z,v−i)dz

=vi(1)−

= vi(1)−(0+vi −b∗)

= b∗.

Alternatively, by integrating along the y-axis (i.e., R f (b) f −1 (y)dy),2

f (a)

bidder i’s payment can be expressed as follows: for ε ∈ (0, 1),

2 As the allocation function, call it f , is not invertible, but is weakly

increasing and right continuous, we define f(−1)(y) = inf{x | f(x) ≥ y}: e.g., f−1(1/2) = b∗.

Z vi ?dx (z,v )? pi(vi,v−i) = z i −i dz

Z ε Z 1−ε ?dxi(z,v−i)? = z(0)dz+ z

Z vi ? 0dz+ ∗ 1dz

0b

homework 3: myerson’s lemma 2

0 dz

0 ε dz 1−ε Z1−ε ∗

= bdy ε

∗ Z 1−ε =b dy ε

= b∗,

because the inverse of the allocation function is b∗, for all y ∈ (0, 1),

and limε→0 R 1−ε dy = 1. Intuitively, we can conclude the following ε

from this derivation: pi(vi, v−i) = b∗ · [jump in xi(·, v−i) at b∗]. Suppose that the allocation rule is piecewise constant on the con-

tinuous interval [0, vi], and discontinuous at points {z1, z2, . . . , zl} in this interval. That is, there are l points at which the allocation jumps from x(zj, v−i) to x(zj+1, v−i) (see Figure 1). Assuming this “jumpy” allocation rule is weakly increasing in value, prove that Myerson’s payment rule can be expressed as follows:

l

pi(vi, v−i) = ∑ zj · ?jump in xi(·, v−i) at zj? . (2) j=1

3 Sponsored Search Extension

In this problem, we generalize our model of sponsored search to include an additional quality parameter βi > 0 that characterizes each bidder i. With this additional parameter, we can view αj as the probability a user views an ad, and βi as the conditional probability that a user then clicks, given that they are already viewing the ad. Note that αj, the view probability, depends only on the slot j, not

Z 1

dz+ z(0)dz

 

xi(z3, v−i) xi(z2, v−i) xi(z1, v−i)

Figure 1: Allocation Rule. Shaded area represents payment.

z1z2 z3 Value, vi

on the advertiser occupying that slot, while βi, the conditional click probablity, explicitly depends on the advertiser i.

In this model, given bids v, bidder i’s utility is given by: ui(v) = βivix(v) − p(v)

So if bidder i is allocated slot j, their utility is: ui(v) = βiviαj − p(v)

Like click probabilities, you should assume qualities are public, not private, information.

1.

2.

4

optimization. The problem can be stated as follows:

There is a knapsack, which can hold a maximum weight of W ≥ 0. There are n items; each item i has weight wi ≤ W and value vi ≥ 0. The goal is to find a subset of items of maximal total value with total weight no more than W.

Written as an integer linear program,

n

max ∑ xivi

x i=1

Define total welfare for this model of sponsored search, and then describe an allocation rule that maximizes total welfare, given the bidders’ reports. Justify your answer.

Argue that your allocation rule is monotonic, and use Myerson’s characterization lemma to produce a payment rule that yields a DSIC mechanism for this sponsored search setting.

The Knapsack Auction

The knapsack problem is a famous NP-hard3 problem in combinatorial

3 There are no known polynomial-time solutions.

homework 3: myerson’s lemma 3

Allocation, xi(vi, v−i)

 

subject to

n

∑xiwi ≤W i=1

xi∈{0,1}, ∀i∈[n]

The key difference between optimization and mechanism design problems is that in mechanism design problems the constants (e.g., vi and wi) are not assumed to be known to the center / optimizer; on the contrary, they must be elicted, after which the optimization problem can then be solved as usual.

With this understanding in mind, we can frame the knapsack problem as a mechanism design problem as follows. Each bidder

has an item that they would like to put in the knapsack. Each item is characterized by two parameters—a public weight wi and a private value vi. An auction takes place, in which bidders report their values. The auctioneer then puts some of the items in the knapsack, and the bidders whose items are selected pay for this privilege. One real- world application of a knapsack auction is the selling of commercial snippets in a 5-minute ad break (e.g., during the Superbowl).4

Since the problem is NP-hard, we are unlikely to find a polynomial- time welfare-maximizing solution. Instead, we will produce a polynomial- time, DSIC mechanism that is a 2-approximation of the optimal wel-

fare. In particular, for any set possible set of values and weights, we

aim to always achieve at least 50% of the optimal welfare.

We propose the following greedy allocation scheme: Sort the bid- ders’ items in decreasing order by their ratios vi/wi, and then allocate items in that order until there is no room left in the knapsack.

1. Show that the greedy allocation scheme is not a 2-approximation by producing a counterexample where it fails to achieve 50% of the optimal welfare.

Alice proposes a small improvement to the greedy allocation scheme. Her improved allocation scheme compares the welfare achieved by the greedy allocation scheme to the welfare achieved

by simply putting the single item of highest value into the knapsack.5 She then uses whichever of the two approaches achieves greater wel- fare. It can be shown that this scheme yields a 2-approximation of optimal welfare. We will use it to create a mechanism that satisfies individual rationality and incentive compatibility.

2. Argue that Alice’s allocation scheme is monotone.

3. Now use Myerson’s payment formula to produce payments such that the resulting mechanism is DSIC and IR.

4 Here, the weight of a commercial is its time in seconds.

homework 3: myerson’s lemma 4

5 Note that weakly greater welfare could be achieved by greedily filling the knapsack with items in decreasing order of value until no more items

fit. We do not consider this scheme, because it is unnecessary to achieve

a 2-approximation; however, it is an obvious heuristic that anyone solving this problem in the real world
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫ACP Assignment 1 Specificaons
  • 下一篇:代做ECON 323 Econometric Analysis 2
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗證碼平臺 幣安官網下載 歐冠直播 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    狠狠综合久久久久综合网址-a毛片网站-欧美啊v在线观看-中文字幕久久熟女人妻av免费-无码av一区二区三区不卡-亚洲综合av色婷婷五月蜜臀-夜夜操天天摸-a级在线免费观看-三上悠亚91-国产丰满乱子伦无码专区-视频一区中文字幕-黑人大战欲求不满人妻-精品亚洲国产成人蜜臀av-男人你懂得-97超碰人人爽-五月丁香六月综合缴情在线
  • <dl id="akume"></dl>
  • <noscript id="akume"><object id="akume"></object></noscript>
  • <nav id="akume"><dl id="akume"></dl></nav>
  • <rt id="akume"></rt>
    <dl id="akume"><acronym id="akume"></acronym></dl><dl id="akume"><xmp id="akume"></xmp></dl>
    欧美视频在线观看视频| 亚洲综合激情视频| 色悠悠久久综合网| 草草草视频在线观看| 无码内射中文字幕岛国片| 亚洲最新免费视频| 亚洲免费看av| 久久久久久久久久久免费视频| 色哺乳xxxxhd奶水米仓惠香| 中文字幕免费高清在线| 91精品91久久久中77777老牛| 麻豆md0077饥渴少妇| www.这里只有精品| 手机看片福利盒子久久| 欧美日韩国产精品激情在线播放| 屁屁影院ccyy国产第一页| 中文字幕 欧美日韩| 性猛交ⅹ×××乱大交| 91人人澡人人爽人人精品| 一女被多男玩喷潮视频| 人妻无码久久一区二区三区免费 | 中文字幕一区久久| 日韩欧美xxxx| 一级黄色香蕉视频| 99视频在线视频| 精品999在线| 超碰成人在线播放| 国产一级片自拍| 欧美精品色视频| 成人在线观看www| 亚洲精品天堂成人片av在线播放 | 亚洲成人动漫在线| 日本三日本三级少妇三级66| 永久免费在线看片视频| 日韩视频在线免费播放| 在线免费看v片| 激情图片qvod| 亚洲熟妇av日韩熟妇在线| a在线视频观看| 国产一二三四在线视频| 久久精品国产露脸对白| 国产免费一区二区三区四在线播放| 在线免费黄色小视频| 97中文字幕在线| 亚洲国产精品久久久久爰色欲| 欧美三级一级片| 亚洲欧美在线精品| 99中文字幕在线观看| 亚欧无线一线二线三线区别| 天美星空大象mv在线观看视频| 欧美大片久久久| 无码中文字幕色专区| 久久精品影视大全| 黄色网在线视频| 国产91色在线观看| 久久久久久久香蕉| caopor在线视频| 黄色影视在线观看| www.激情小说.com| 强开小嫩苞一区二区三区网站| 日本精品一区在线观看| а 天堂 在线| 777米奇影视第四色| ijzzijzzij亚洲大全| 女人另类性混交zo| 五月天激情图片| wwwwwxxxx日本| 欧美 日韩 国产一区| 美女黄色片网站| 亚洲综合色在线观看| 青青青免费在线| 日本在线视频www色| 一区二区三区 日韩| 亚洲熟妇av一区二区三区漫画| 欧美视频亚洲图片| 男人搞女人网站| 人妻少妇被粗大爽9797pw| 国产内射老熟女aaaa| 国产大片一区二区三区| 天天影视综合色| 欧美性大战久久久久xxx | 亚洲乱码日产精品bd在线观看| 9l视频白拍9色9l视频| 成年人网站大全| 欧美国产亚洲一区| www.夜夜爱| 9色视频在线观看| 精品少妇人妻av一区二区| 免费精品99久久国产综合精品应用| 日本xxxxxxx免费视频| 欧美丰满熟妇bbbbbb百度| 国产freexxxx性播放麻豆| 日本精品免费视频| 国内av一区二区| 亚洲第一天堂久久| 欧美国产日韩另类 | 毛毛毛毛毛毛毛片123| 久久久精品高清| 天天色天天综合网| 特级黄色录像片| 成人免费看片视频在线观看| 黄色污污在线观看| 少妇久久久久久被弄到高潮| 成人污网站在线观看| 色一情一乱一乱一区91| 日本大胆人体视频| 黄色一级片国产| 久久久999视频| 无码内射中文字幕岛国片| 天天爱天天操天天干| 欧美大片久久久| 成人午夜免费在线视频| 噜噜噜久久亚洲精品国产品麻豆| 亚洲 高清 成人 动漫| 在线观看免费黄网站| 亚洲一区二区偷拍| 成人免费看片'免费看| 夫妻免费无码v看片| 亚洲国产日韩欧美在线观看| 四虎4hu永久免费入口| www.好吊操| 色哟哟精品视频| 99久久99久久精品| 欧美日韩中文在线视频| 粉色视频免费看| 久久久久久www| 污版视频在线观看| 日韩人妻一区二区三区蜜桃视频| 欧美在线观看成人| 国产传媒免费观看| 18禁网站免费无遮挡无码中文| 亚洲视频在线观看一区二区三区| 四虎1515hh.com| 凹凸国产熟女精品视频| 北条麻妃亚洲一区| 91国视频在线| 中文字幕色呦呦| 午夜国产一区二区三区| 青青青在线观看视频| 亚洲一区二区三区四区五区xx| 免费人成在线观看视频播放| 视频二区在线播放| 日韩免费一级视频| 四虎4hu永久免费入口| 亚洲一区二区蜜桃| 黄色一级在线视频| 亚洲中文字幕无码一区二区三区| 日本xxxx黄色| 欧美私人情侣网站| 国产无限制自拍| 日本福利视频导航| av亚洲天堂网| 成年人在线看片| 人妻有码中文字幕| 国产中文字幕二区| cao在线观看| 久久综合久久网| 黄色一级片av| 亚洲成人动漫在线| 免费不卡av网站| 五月天婷婷在线观看视频| 久久精品影视大全| 色一情一乱一伦一区二区三区日本 | 国产成人免费高清视频| 在线一区二区不卡| 一级黄色大片儿| 午夜激情视频网| 四虎1515hh.com| 国产日韩第一页| 99久久久精品视频| 日韩精品在线视频免费观看| 99久久免费观看| 岛国大片在线播放| 国产美女在线一区| 欧美老熟妇喷水| 99免费视频观看| 一级片视频免费观看| 亚洲av无日韩毛片久久| 欧美少妇一级片| 欧美又粗又长又爽做受| 免费在线观看亚洲视频| 免费黄色日本网站| www.欧美日本| www.成年人| 欧美国产日韩激情| 无码无遮挡又大又爽又黄的视频| 青青草av网站| 一本二本三本亚洲码| 日韩欧美精品免费| 国产精品欧美激情在线观看| 高清av免费看| 欧美一级爱爱视频| 国产在线青青草| 日韩视频在线观看视频| 欧美亚洲日本一区二区三区| 日本a√在线观看| 黄黄视频在线观看| 国产精品人人妻人人爽人人牛| 岛国av在线免费| 欧美,日韩,国产在线|