狠狠综合久久久久综合网址-a毛片网站-欧美啊v在线观看-中文字幕久久熟女人妻av免费-无码av一区二区三区不卡-亚洲综合av色婷婷五月蜜臀-夜夜操天天摸-a级在线免费观看-三上悠亚91-国产丰满乱子伦无码专区-视频一区中文字幕-黑人大战欲求不满人妻-精品亚洲国产成人蜜臀av-男人你懂得-97超碰人人爽-五月丁香六月综合缴情在线

代做3 D printer materials estimation編程

時間:2024-02-21  來源:  作者: 我要糾錯



Project 1: 3D printer materials estimation
Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
definitions on the code.R file and write your report using report.Rmd. You must upload the following three
files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
in the README.md file.
The main text in your report should be a coherent presentation of theory and discussion of methods and
results, showing code for code chunks that perform computations and analysis but not code for code chunks
that generate functions, figures, or tables.
Use the echo=TRUE and echo=FALSE to control what code is visible.
The styler package addin is useful for restyling code for better and consistent readability. It works for both
.R and .Rmd files.
The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
attached in Learn as PDF files.
Submission should be done through Gradescope.
1 The data
A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
much material will be required to print the object.
The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
• Index: an observation index
• Date: printing dates
• Material: the printing material, identified by its colour
• CAD_Weight: the object weight (in grams) that the CAD software calculated
• Actual_Weight: the actual weight of the object (in grams) after printing
Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
and Material.
2 Classical estimation
Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
Actual_Weight. We denote the CAD_weight for observation i by xi
, and the corresponding Actual_Weight
by yi
. The two models are defined by
• Model A: yi ∼ Normal[β1 + β2xi
, exp(β3 + β4xi)]
• Model B: yi ∼ Normal[β1 + β2xi
, exp(β3) + exp(β4)x
2
i
)]
The printer operator reasons that random fluctuations in the material properties (such as the density) and
room temperature should lead to a relative error instead of an additive error, leading them to model B as an
approximation of that. The basic physics assumption is that the error in the CAD software calculation of
the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
convenient, but has no such motivation in physics.
1
Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
specified model.
Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
best set of parameters found and the estimate of the Hessian at the solution found.
First, use filament1_estimate() to estimate models A and B using the filament1 data:
• fit_A = filament1_estimate(filament1, “A”)
• fit_B = filament1_estimate(filament1, “B”)
Use the approximation method for large n and the outputs from filament1_estimate() to construct an
approximate 90% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
Comment on the differences to interpret the model estimation results.
3 Bayesian estimation
Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
observation i:
yi ∼ Normal[β1 + β2xi
, β3 + β4x
2
i
)].
To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
introduced, and the printer operator assigns independent prior distributions as follows:
θ1 ∼ Normal(0, γ1),
θ2 ∼ Normal(1, γ2),
θ3 ∼ LogExp(γ3),
θ4 ∼ LogExp(γ4),
where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
3.1 Prior density
With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
of the joint prior density p(θ) for the four θi parameters.
3.2 Observation likelihood
With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
evaluates the observation log-likelihood p(y|θ) for the model defined above.
3.3 Posterior density
Define and document a function log_posterior_density with arguments theta, x, y, and params, which
evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
2
3.4 Posterior mode
Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
to do maximisation instead of minimisation.
3.5 Gaussian approximation
Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
θ. Use start values θ = 0.
3.6 Importance sampling function
The aim is to construct a 90% Bayesian credible interval for each βj using importance sampling, similarly to
the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
densities.
Define and document a function do_importance taking arguments N (the number of samples to generate),
mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
parameters that are needed by the function code.
The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
information.
3.7 Importance sampling
Use your defined functions to compute an importance sample of size N = 10000. With the help of
the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
Construct 90% credible intervals for each of the four model parameters based on the importance sample.
In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
probability), generating a 1-row, 2-column data.frame to help structure the code.
Discuss the results both from the sampling method point of view and the 3D printer application point of
view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
and plotting the importance log-weights to explain how they depend on the sampled β-values).
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫game of Bingo cards
  • 下一篇:代寫PLAN60722 – Urban Design Project
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗證碼平臺 幣安官網下載 歐冠直播 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    狠狠综合久久久久综合网址-a毛片网站-欧美啊v在线观看-中文字幕久久熟女人妻av免费-无码av一区二区三区不卡-亚洲综合av色婷婷五月蜜臀-夜夜操天天摸-a级在线免费观看-三上悠亚91-国产丰满乱子伦无码专区-视频一区中文字幕-黑人大战欲求不满人妻-精品亚洲国产成人蜜臀av-男人你懂得-97超碰人人爽-五月丁香六月综合缴情在线
  • <dl id="akume"></dl>
  • <noscript id="akume"><object id="akume"></object></noscript>
  • <nav id="akume"><dl id="akume"></dl></nav>
  • <rt id="akume"></rt>
    <dl id="akume"><acronym id="akume"></acronym></dl><dl id="akume"><xmp id="akume"></xmp></dl>
    嫩草影院中文字幕| 欧美 日韩 国产在线观看| 国产乱子夫妻xx黑人xyx真爽| 色啦啦av综合| 免费精品99久久国产综合精品应用| 福利视频一区二区三区四区| 国产一级不卡视频| 免费的一级黄色片| 国产曰肥老太婆无遮挡| 欧美一区二区三区综合| www插插插无码免费视频网站| 天堂av在线中文| 日韩网站在线免费观看| 国产精品网站免费| 丁香啪啪综合成人亚洲| 亚洲一区在线不卡| 天天干天天色天天干| 福利在线小视频| 自拍日韩亚洲一区在线| www.xxx亚洲| 五月六月丁香婷婷| 日韩a级在线观看| 丁香婷婷激情网| 久久久久亚洲av无码专区喷水| www.-级毛片线天内射视视| 日韩a∨精品日韩在线观看| 日本wwww视频| 国产乱码一区二区三区四区| 强开小嫩苞一区二区三区网站 | 免费观看成人在线视频| 免费涩涩18网站入口| 欧美性受黑人性爽| 别急慢慢来1978如如2| 成人亚洲免费视频| 久色视频在线播放| www.亚洲一区二区| 国产福利一区视频| 精品丰满人妻无套内射| 中文字幕在线综合| 免费看国产曰批40分钟| 日日噜噜噜噜久久久精品毛片| www.色.com| 九色在线视频观看| 日韩video| 天堂av在线8| 国产精品第12页| 国产精品视频二| 亚洲一二区在线观看| 免费看日本毛片| 国产精品av免费观看| 国产传媒免费观看| 色综合av综合无码综合网站| 国产a级黄色大片| 三级av免费看| 九色porny自拍| 91视频免费版污| 九色在线视频观看| 国产日韩欧美精品在线观看| 丰满女人性猛交| 天天操精品视频| 激情文学亚洲色图| 国产传媒免费观看| 亚洲综合激情视频| 亚洲精品综合在线观看| 日本一二区免费| 中文字幕免费高清在线| 污污动漫在线观看| 国产探花在线看| 毛片毛片毛片毛片毛| 99re99热| 黄色录像特级片| 日韩一级片免费视频| av在线免费观看国产| 久久久久久免费看| 国产一区二区在线视频播放| 日本中文字幕网址| 麻豆av免费在线| 久久久精品高清| 一级特黄妇女高潮| 国产九九九九九| 免费看污黄网站| 国产精品夜夜夜爽张柏芝| 久久精品在线免费视频| 日本a在线免费观看| 欧美日韩第二页| 爱豆国产剧免费观看大全剧苏畅| 伊人精品视频在线观看| 国产激情片在线观看| 国产av无码专区亚洲精品| 最新天堂在线视频| wwwjizzjizzcom| 国产一区视频免费观看| av中文字幕网址| 国产原创popny丨九色| 超碰在线播放91| 超薄肉色丝袜足j调教99| 欧美精品99久久| 国产成人美女视频| 国产乱子伦农村叉叉叉| 福利视频999| 亚洲欧洲日产国码无码久久99| 久草综合在线观看| 18黄暴禁片在线观看| 91激情视频在线| 国产精品久久..4399| 看看黄色一级片| 欧美黄色一级片视频| 国产精品12p| 久久婷五月综合| 欧美 国产 综合| 欧美亚洲色图视频| 免费黄频在线观看| 黑鬼大战白妞高潮喷白浆| 国产又爽又黄ai换脸| 三级视频中文字幕| 国产男女在线观看| 成人午夜视频免费观看| 婷婷中文字幕在线观看| 国产精品无码av无码| 成年人午夜免费视频| dy888午夜| 欧美xxxxxbbbbb| 爱爱爱爱免费视频| 91看片在线免费观看| wwwxxx黄色片| 日韩av一二三四| jizzjizzxxxx| 九色自拍视频在线观看| 国产91在线亚洲| 黄色网在线视频| 欧美黄色免费网址| 亚洲精品国产suv一区88| 亚洲欧美一二三| 久久男人资源站| 99久久国产综合精品五月天喷水| 在线观看18视频网站| 久久久久久久香蕉| 欧日韩免费视频| 很污的网站在线观看| 日韩亚洲欧美视频| 国产特级黄色大片| 国产v亚洲v天堂无码久久久| 亚洲欧美在线精品| 不卡的在线视频| 免费看黄色a级片| 每日在线更新av| 久久人妻精品白浆国产| 日本黄大片一区二区三区| 中文字幕av不卡在线| 狠狠操狠狠干视频| 妞干网这里只有精品| www.成年人视频| 91av在线免费播放| 91社在线播放| 国产av天堂无码一区二区三区| 97xxxxx| 天堂av2020| 婷婷无套内射影院| 中文字幕第80页| 亚洲第一综合网站| 精品人妻一区二区三区四区在线 | 黑人粗进入欧美aaaaa| 一区二区在线免费看| 成人小视频在线观看免费| 国产淫片av片久久久久久| www.久久久久久久久久久| 激情五月婷婷六月| 中文字幕亚洲乱码| 男人添女人下部高潮视频在观看| www.99av.com| 亚洲精品蜜桃久久久久久| 亚洲黄色小视频在线观看| 欧美日韩激情四射| 日本不卡一区二区在线观看| 日韩欧美国产综合在线| 一级片黄色免费| 久久久精品三级| 成人一区二区免费视频| 国产精品久久久久久9999| 欧美成人精品欧美一级乱| 日本精品免费视频| 亚洲一区二区三区四区五区| 无码人妻丰满熟妇区96| 国产精品一二三在线观看| 四季av一区二区三区| 成人亚洲视频在线观看| 久久久久久久久久久99| 欧美做暖暖视频| 一区二区三区四区久久| 国产九九热视频| 国产aaaaa毛片| 日本999视频| 久久精品午夜福利| 欧美在线观看成人| 日本免费黄视频| 欧美国产亚洲一区| 国产精品专区在线| 草草久久久无码国产专区| 一本大道东京热无码aⅴ| 97在线免费视频观看|