狠狠综合久久久久综合网址-a毛片网站-欧美啊v在线观看-中文字幕久久熟女人妻av免费-无码av一区二区三区不卡-亚洲综合av色婷婷五月蜜臀-夜夜操天天摸-a级在线免费观看-三上悠亚91-国产丰满乱子伦无码专区-视频一区中文字幕-黑人大战欲求不满人妻-精品亚洲国产成人蜜臀av-男人你懂得-97超碰人人爽-五月丁香六月综合缴情在线

代做3 D printer materials estimation編程

時間:2024-02-21  來源:  作者: 我要糾錯



Project 1: 3D printer materials estimation
Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
definitions on the code.R file and write your report using report.Rmd. You must upload the following three
files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
in the README.md file.
The main text in your report should be a coherent presentation of theory and discussion of methods and
results, showing code for code chunks that perform computations and analysis but not code for code chunks
that generate functions, figures, or tables.
Use the echo=TRUE and echo=FALSE to control what code is visible.
The styler package addin is useful for restyling code for better and consistent readability. It works for both
.R and .Rmd files.
The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
attached in Learn as PDF files.
Submission should be done through Gradescope.
1 The data
A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
much material will be required to print the object.
The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
• Index: an observation index
• Date: printing dates
• Material: the printing material, identified by its colour
• CAD_Weight: the object weight (in grams) that the CAD software calculated
• Actual_Weight: the actual weight of the object (in grams) after printing
Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
and Material.
2 Classical estimation
Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
Actual_Weight. We denote the CAD_weight for observation i by xi
, and the corresponding Actual_Weight
by yi
. The two models are defined by
• Model A: yi ∼ Normal[β1 + β2xi
, exp(β3 + β4xi)]
• Model B: yi ∼ Normal[β1 + β2xi
, exp(β3) + exp(β4)x
2
i
)]
The printer operator reasons that random fluctuations in the material properties (such as the density) and
room temperature should lead to a relative error instead of an additive error, leading them to model B as an
approximation of that. The basic physics assumption is that the error in the CAD software calculation of
the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
convenient, but has no such motivation in physics.
1
Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
specified model.
Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
best set of parameters found and the estimate of the Hessian at the solution found.
First, use filament1_estimate() to estimate models A and B using the filament1 data:
• fit_A = filament1_estimate(filament1, “A”)
• fit_B = filament1_estimate(filament1, “B”)
Use the approximation method for large n and the outputs from filament1_estimate() to construct an
approximate 90% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
Comment on the differences to interpret the model estimation results.
3 Bayesian estimation
Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
observation i:
yi ∼ Normal[β1 + β2xi
, β3 + β4x
2
i
)].
To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
introduced, and the printer operator assigns independent prior distributions as follows:
θ1 ∼ Normal(0, γ1),
θ2 ∼ Normal(1, γ2),
θ3 ∼ LogExp(γ3),
θ4 ∼ LogExp(γ4),
where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
3.1 Prior density
With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
of the joint prior density p(θ) for the four θi parameters.
3.2 Observation likelihood
With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
evaluates the observation log-likelihood p(y|θ) for the model defined above.
3.3 Posterior density
Define and document a function log_posterior_density with arguments theta, x, y, and params, which
evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
2
3.4 Posterior mode
Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
to do maximisation instead of minimisation.
3.5 Gaussian approximation
Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
θ. Use start values θ = 0.
3.6 Importance sampling function
The aim is to construct a 90% Bayesian credible interval for each βj using importance sampling, similarly to
the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
densities.
Define and document a function do_importance taking arguments N (the number of samples to generate),
mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
parameters that are needed by the function code.
The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
information.
3.7 Importance sampling
Use your defined functions to compute an importance sample of size N = 10000. With the help of
the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
Construct 90% credible intervals for each of the four model parameters based on the importance sample.
In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
probability), generating a 1-row, 2-column data.frame to help structure the code.
Discuss the results both from the sampling method point of view and the 3D printer application point of
view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
and plotting the importance log-weights to explain how they depend on the sampled β-values).
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫game of Bingo cards
  • 下一篇:代寫PLAN60722 – Urban Design Project
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗證碼平臺 幣安官網下載 歐冠直播 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    狠狠综合久久久久综合网址-a毛片网站-欧美啊v在线观看-中文字幕久久熟女人妻av免费-无码av一区二区三区不卡-亚洲综合av色婷婷五月蜜臀-夜夜操天天摸-a级在线免费观看-三上悠亚91-国产丰满乱子伦无码专区-视频一区中文字幕-黑人大战欲求不满人妻-精品亚洲国产成人蜜臀av-男人你懂得-97超碰人人爽-五月丁香六月综合缴情在线
  • <dl id="akume"></dl>
  • <noscript id="akume"><object id="akume"></object></noscript>
  • <nav id="akume"><dl id="akume"></dl></nav>
  • <rt id="akume"></rt>
    <dl id="akume"><acronym id="akume"></acronym></dl><dl id="akume"><xmp id="akume"></xmp></dl>
    欧美三级午夜理伦三级| 国产成人无码av在线播放dvd| 精品久久一二三| 日韩成人手机在线| 成人性生活视频免费看| a级黄色小视频| 日本久久久网站| 精品国产一区二区三区无码| 无码专区aaaaaa免费视频| 人妻夜夜添夜夜无码av| 免费在线激情视频| 人人干人人视频| 中文字幕视频三区| 欧美少妇一区二区三区| 久久国产精品视频在线观看| 欧美 国产 小说 另类| 妺妺窝人体色www在线观看| 色戒在线免费观看| 日韩精品免费一区| 3d动漫一区二区三区| 天美星空大象mv在线观看视频| 污色网站在线观看| 欧美做暖暖视频| 凹凸日日摸日日碰夜夜爽1| av噜噜在线观看| 日韩精品综合在线| 国产九九热视频| av日韩在线看| 婷婷免费在线观看| 日本手机在线视频| 亚洲精品免费一区亚洲精品免费精品一区 | 好色先生视频污| 成人免费aaa| 国产一级免费大片| 凹凸国产熟女精品视频| 91网址在线观看精品| 久草热视频在线观看| 香蕉视频色在线观看| 妺妺窝人体色www在线小说| 91免费网站视频| 天天爱天天操天天干| 黄色一级片在线看| 精品嫩模一区二区三区| 天天操,天天操| 国产成人无码精品久久久性色| 日本中文字幕观看| 成人在线免费播放视频| 日韩 欧美 视频| 福利网在线观看| 制服丝袜中文字幕第一页 | 日韩一级在线免费观看| 大伊香蕉精品视频在线| av电影一区二区三区| 中文av字幕在线观看| 国产精品69页| 日韩精品一区二区三区色欲av| 大西瓜av在线| 亚洲国产精品无码观看久久| 日本老太婆做爰视频| 人人妻人人澡人人爽精品欧美一区| 久草青青在线观看| 精品一区二区中文字幕| 日韩国产一级片| av免费看网址| 欧美日韩在线中文| av观看免费在线| 欧美日韩亚洲一二三| 久久久久久香蕉| 国产精品一区二区羞羞答答| 丰满少妇在线观看| 最近中文字幕一区二区| 亚洲第一狼人区| 肉色超薄丝袜脚交| 欧美久久久久久久久久久久久久| www成人免费| 老太脱裤让老头玩ⅹxxxx| 国产在线青青草| 午夜激情av在线| 日韩不卡视频一区二区| 免费看黄在线看| 99视频免费播放| 天天综合中文字幕| 欧美日韩福利在线| 亚洲人成无码www久久久| 欧美美女性视频| 国产精品三级一区二区| 37pao成人国产永久免费视频| 色综合天天色综合| 国产精品av免费观看| 国产精品动漫网站| 国产美女视频免费看| 日本熟妇人妻xxxx| 色戒在线免费观看| 国产中文字幕乱人伦在线观看| 成人在线观看a| 国产精品h视频| 十八禁视频网站在线观看| 日韩视频在线观看视频| 国产精品333| 国产精品美女在线播放| 国产免费人做人爱午夜视频| 欧美性受黑人性爽| 国产成人黄色网址| 蜜臀av无码一区二区三区| 污污网站免费看| 日韩视频在线视频| 国产av不卡一区二区| 粗暴91大变态调教| 免费观看美女裸体网站| 中国黄色录像片| 57pao国产成永久免费视频| 国产精品97在线| 99在线免费视频观看| 亚洲欧美日韩不卡| 韩国视频一区二区三区| 国产中文字幕二区| 青青青青在线视频| 国产精品久久久影院| 色播五月激情五月| 国产又粗又长又大的视频| 5月婷婷6月丁香| 欧美激情 国产精品| 大西瓜av在线| 无码人妻少妇伦在线电影| 7777在线视频| 佐佐木明希av| 精品无码av无码免费专区| 日韩精品在线播放视频| 超碰在线资源站| 黄色片免费网址| 福利网在线观看| 不卡中文字幕在线| 日本久久高清视频| 久久手机在线视频| 国产日韩av网站| 久久无码高潮喷水| 啊啊啊国产视频| 欧美一级小视频| 日本不卡一区二区三区四区| 国产福利片一区二区| 中国一级黄色录像| 无码av天堂一区二区三区| 波多野结衣家庭教师在线播放| 国模吧无码一区二区三区| 欧美在线一区视频| 国产性生交xxxxx免费| 在线看的黄色网址| 国产a级片免费看| 日韩网站在线免费观看| 37pao成人国产永久免费视频| 999香蕉视频| www.色.com| 亚洲不卡中文字幕无码| 国产精品天天av精麻传媒| 奇米777在线视频| 久激情内射婷内射蜜桃| 午夜激情av在线| 国产亚洲黄色片| 伊人国产在线视频| 97在线国产视频| av亚洲天堂网| 成 年 人 黄 色 大 片大 全| 日本特黄a级片| www.国产在线视频| 超碰成人在线播放| 久久久亚洲国产精品| 日韩成人精品视频在线观看| 国产成人艳妇aa视频在线| 九九视频精品在线观看| 日韩精品一区二区三区四| 中文字幕第36页| 久久国产精品网| 91香蕉视频在线观看视频| 欧美xxxxx在线视频| 国产精品videossex国产高清| 欧美伦理片在线观看| 久久综合九色综合88i| 先锋影音男人资源| 中文字幕免费高清在线| 久久9精品区-无套内射无码| 欧美高清中文字幕| a级黄色片网站| 中文字幕1234区| 人人干人人干人人| 白嫩少妇丰满一区二区| 91免费黄视频| 精品久久久无码人妻字幂| 992tv人人草| 国产原创精品在线| 国产又黄又猛又粗| 男人操女人免费软件| 9久久9毛片又大又硬又粗| 日本男女交配视频| 黄网站色视频免费观看| 深爱五月综合网| 污视频在线观看免费网站| 三区视频在线观看| 日韩a一级欧美一级| www.欧美激情.com| 免费看av软件|