国产一区二区三区香蕉-2020国产成人精品视频-欧美日韩亚洲三区-www.91桃色-最美情侣中文第5季免费观看-久草毛片-国产成人精品av-男女猛烈拍拍拍无挡视频-中文字幕看片-色视频欧美一区二区三区-久久久久久久久久影院-一级a爱片久久毛片-精品久久久久久无码中文字幕一区-欧美色图网站-无码色偷偷亚洲国内自拍-国产一区在线免费观看

代寫DTS304TC、代做Java/c++程序語言

時間:2024-03-04  來源:  作者: 我要糾錯



XJTLU Entrepreneur College (Taicang) Cover Sheet
Module code and Title DTS304TC Machine Learning
School Title School of AI and Advanced Computing
Assignment Title Assessment Task 1
Submission Deadline 23:59, 24th March (Sunday), 2024
(China Time, GMT + 8)
Final Word Count N/A
If you agree to let the university use your work anonymously for teaching and 
learning purposes, please type “yes” here.
I certify that I have read and understood the University’s Policy for dealing with Plagiarism, Collusion 
and the Fabrication of Data (available on Learning Mall Online). With reference to this policy I certify 
that:
? My work does not contain any instances of plagiarism and/or collusion.
My work does not contain any fabricated data.
By uploading my assignment onto Learning Mall Online, I formally declare that all of the 
above information is true to the best of my knowledge and belief.
Scoring – For Tutor Use
Student ID 
Stage of Marking Marker
Code
Learning Outcomes Achieved (F/P/M/D)
(please modify as appropriate)
Final 
Score
A B C
1
st Marker – red pen
Moderation
– green pen
IM
Initials
The original mark has been accepted by the moderator (please circle 
as appropriate):
Y / N
Data entry and score calculation have been checked by another tutor 
(please circle):
Y
2
nd Marker if 
needed – green pen
For Academic Office Use Possible Academic Infringement (please tick as appropriate)
Date 
Received
Days 
late
Late 
Penalty
? Category A
Total Academic Infringement Penalty (A,B, 
C, D, E, Please modify where necessary) 
_____________________ 
? Category B
? Category C
? Category D
? Category E
DTS304TC Machine Learning
Coursework – Assessment Task 1
Submission deadline: TBD
Percentage in final mark: 50%
Learning outcomes assessed: 
A. Demonstrate a solid understanding of the theoretical issues related to problems that machine learning 
algorithms try to address.
B. Demonstrate understanding of properties of existing ML algorithms and new ones.
C. Apply ML algorithms for specific problems.
Individual/Group: Individual
Length: The assessment has a total of 4 questions which gives 100 marks. The submitted file must be in 
pdf format.
Late policy: 5% of the total marks available for the assessment shall be deducted from the assessment 
mark for each working day after the submission date, up to a maximum of five working days
Risks:
? Please read the coursework instructions and requirements carefully. Not following these instructions 
and requirements may result in loss of marks.
? The formal procedure for submitting coursework at XJTLU is strictly followed. Submission link on
Learning Mall will be provided in due course. The submission timestamp on Learning Mall will be 
used to check late submission.
__________________________________________________________________
Question 1: Coding Exercise - Heart Disease Classification with Machine Learning (50 Marks)
In this coding assessment, you are presented with the challenge of analyzing a dataset that contains 
patient demographics and health indicators to predict heart disease classifications. This entails solving a 
multi-class classification problem with five distinct categories, incorporating both categorical and 
numerical attributes.
Your initial task is to demonstrate proficiency in encoding categorical features and imputing missing 
values to prepare the dataset for training a basic classifier. Beyond these foundational techniques, you are 
invited to showcase your advanced skills. This may include hyperparameter tuning using sophisticated 
algorithms like the Asynchronous Successive Halving Algorithm (ASHA). You are also encouraged to 
implement strategies for outlier detection and handling, model ensembling, and addressing class 
imbalance to enhance your model's performance.
Moreover, an external test set without ground truth labels has been provided. Your classifier's 
performance will be evaluated based on this set, underscoring the importance of building a model with 
strong generalization capabilities.
The competencies you develop during this practical project are not only essential for successfully 
completing this assessment but are also highly valuable for your future pursuits in the field of data science.
Throughout this project, you are encouraged to utilize code that was covered during our Lab sessions, as 
well as other online resources for assistance. Please ensure that you provide proper citations and links to 
any external resources you employ in your work. However, the use of Generative AI for content 
generation (such as ChatGPT) is not permitted on all assessed coursework in this module.
Project Steps:
a) Feature Preprocessing (8 Marks)
 You are required to demonstrate four key preprocessing steps: loading the dataset, encoding 
categorical features, handling missing values, and dividing the dataset into training, validation, 
and test sets.
 It is crucial to consistently apply the same feature preprocessing steps—including encoding 
categorical features, handling missing values, and any other additional preprocessing or custom 
modifications you implement—across the training, validation, internal testing, and the externally 
provided testing datasets. For efficient processing, you may want to consider utilizing the 
sklearn.pipeline and sklearn.preprocessing library functions.
b) Training Classifiers (10 Marks)
 Train a logistic regression classifier with parameter tuned using grid search, and a random forest 
classifier with parameters tuned using Async Successive Halving Algorithm (ASHA) with 
ray[tune] libraries. You should optimize the model's AUC score during the hyperparameter tuning 
process.
 You should aim to optimize a composite score, which is the average of the classification accuracy 
and the macro-averaged F1 score. This objective encourages a balance between achieving high 
accuracy overall and ensuring that the classifier performs well across all classes in a balanced 
manner, which is especially important in multi-class classification scenarios where class 
imbalance might be a concern.
To clarify, your optimization goal is to maximize a composite accuracy metric defined as follows:
accuracy = 0.5 * (f1_score(gt, pred, average='macro') + accuracy_score(gt, pred))
In this formula, f1_score and accuracy_score refer to functions provided by the scikit-learn 
library, with f1_score being calculated with the 'macro' average to treat all classes equally.
 Ensure that you perform model adjustments, including hyperparameter tuning, on the validation 
set rather than the testing set to promote the best generalization of your model.
 We have included an illustrative example of how to implement the ASHA using the ray[tune] 
library. Please refer to the notebook DTS304TC_ASHA_with_Ray_Tune_Example.ipynb located 
in our project data folder for details.
c) Additional Tweaking and External Test Set Benchmark (19 Marks)
 You are encouraged to explore a variety of advanced techniques to improve your model's 
predictive power. 
1. Utilizing different classifiers, for example, XGBoost.
2. Implementing methods for outlier detection and treatment.
3. Creating model ensembles with varied validation splits.
4. Addressing issues of class imbalance.
5. Applying feature engineering strategies, such as creating composite attributes.
6. Implementing alternative validation splitting strategies, like cross-validation or stratified 
sampling, to enhance model tuning.
7. Additional innovative and valid methods not previously discussed.
You will be awarded 3 marks for successfully applying any one of these methods. Should you 
incorporate two or more of the aforementioned techniques, a total of 6 marks will be awarded.
Please include code comments that explain how you have implemented these additional 
techniques. Your code and accompanying commentary should explicitly state the rationale behind 
the selection of these supplementary strategies, as well as the underlying principles guiding your 
implementation. Moreover, it should detail any changes in performance, including improvements, 
if any, resulting from the application of these strategies. An additional 4 marks will be awarded 
for a clear and comprehensive explanation. To facilitate a streamlined review and grading 
process, please ensure that your comments and relevant code are placed within a separate code 
block in your Jupyter notebook, in a manner that is readily accessible for our evaluation.
 Additionally, utilize the entire dataset and the previously determined optimal hyperparameters
and classification pipeline to retrain your top-performing classifier. Then, apply this model to the 
features in 'dts304tc_a1_heart_disease_dataset_external_test.csv', which lacks true labels, to 
produce a set of predictive probability scores. Save these probabilistic scores in a table with two 
columns: the first column for patient IDs and the second for the output classification labels. 
Export this table to a file named external_test_results_[your_student_id].csv. Submit this file for 
evaluation. In the external evaluation conducted by us, your scores will be benchmarked against 
the performance of models developed by your classmates. You will receive four marks for 
successfully completing the prescribed classifier retraining and submission process. Additionally, 
your classifier's benchmark ranking—based on its performance relative to models developed by 
your peers—will be assigned five marks, contingent upon your standing in the ranking.
d) Result Analysis (8 Marks)
 For your best-performing model, compute critical performance metrics such as precision, recall, 
specificity, and the F1 score for each class. Additionally, generate the confusion matrix based on 
your internal test set. Ensure that the code for calculating these performance metrics, as well as 
the resulting statistics, are clearly displayed within your Jupyter notebook. For ease of review, 
position these elements towards the end of your notebook to provide direct access to your 
outcomes.
 Conduct a feature importance analysis by utilizing the feature importance scoring capabilities 
provided by your chosen classifier. What are the top three most important features for classifying 
this medicial condition? If your best performing model does not offer feature importance scoring, 
you may utilize an alternative model for this analysis. Present the results of the feature 
importance analysis within your Jupyter notebook using print statements or code comments. 
Place these relevant code and findings towards the end of the notebook to facilitate easy review of 
your results.
e) Project Submission Instructions (5 Marks - Important, Please Read!)
 Submit your Jupyter notebook in both .ipynb and .PDF formats. Ensure that in the PDF version, 
all model execution results, as well as your code annotations and analyses, are clearly visible. It is 
critical to maintain a well-organized structure in your Jupyter notebook, complemented by clear 
commentary using clean code practices. Your submission's readability and navigability are 
crucial; we cannot assign a score if we cannot understand or locate your code and results. You 
will receive 5 points for clarity in code structure and quality of code comments.
To maintain the readability of your code when converting your Jupyter notebook to a PDF, ensure 
that no single line of code extends beyond the printable page margin, thus preventing line 
truncation. If necessary, utilize line continuation characters or implicit line continuation within 
parentheses, brackets, or braces in Python to break up longer lines of code. After converting to 
PDF, thoroughly review the document to confirm that all code is displayed completely and that 
no line truncation has occurred.
If you have written supplementary code that is not contained within the Jupyter notebook, you 
must submit that as well to guarantee that your Jupyter notebook functions correctly. 
Nevertheless, our primary basis for grading will be the PDF version of your Jupyter notebook. 
Please ensure that all necessary code is included so that the notebook can be executed seamlessly,
and your results are reproducible.
 Submit the results of your external test as a file named external_test_[your_student_id].csv. This 
CSV file must be correctly formatted: the first column must contain patient IDs, and the second 
column must list your predicted classification labels. Any deviation from this format may result 
in the file being unprocessable by our grading software, and therefore unable to be scored.
Project Material Access Instructions
To obtain the complete set of materials for our project, including the dataset, code, and Jupyter notebook 
files, please use the links provided below:
 (OneDrive Link): https://1drv.ms/u/s!AoRfWDkanfAYnvcrXTKMGhNzRztf0g?e=JDwmbR
 (Baidu Drive Link): https://pan.baidu.com/s/1AXSRYO6ujTu1iNspdkIuUA?pwd=h4js
Download password: h4js
When prompted, use the following password to unlock the zip file: DTS304TC (please note that it is case?sensitive and should be entered in all capital letters).
Additionally, for ease of reference, the project's Jupyter notebooks have been appended to the end of this 
document.
Please note that the primary library dependencies for this project include pandas, scikit-learn, xgboost, 
and the ray library with the tune module enabled (ray[tune]).
Question 2: Ensemble Learning (18 marks):
Students are required not to use AI models, such as ChatGPT, for assistance with this question. 
You should give clear calculation steps and explain the relevant concepts using your own words.
(a) Majority Voting with Independent Classifiers (8 Marks)
1. Given individual classifiers C1, C2, and C3 with statistically independent error rates of 40%, 35%, 
and 35% respectively, calculate the accuracy of the majority voting ensemble composed of classifiers 
C1, C2, and C3. Provide the steps you use to determine the ensemble's accuracy, assuming the 
classifiers' decisions are statistically independent. (5 Marks)
(Hints: Calculate the ensemble 's accuracy by summing the probability that all classifiers are correct with 
the probabilities of exactly two classifiers being correct while the third is incorrect)
2. Point out the similarities and differences between the majority voting ensemble method and Random 
Forest, emphasizing the strategies employed by Random Forest to attain higher accuracy. (3 Marks)
(b) AdaBoost Algorithm (10 Marks)
Consider the process of creating an ensemble of decision stumps, referred to as ????, through the standard 
AdaBoost method.
The diagram above shows several two-dimensional labeled points along with the initial decision stump 
we've chosen. This stump gives out binary values and makes its decisions based on a single variable (the 
cut-off). In the diagram, there's a tiny arrow perpendicular to the classifier's boundary that shows where 
the classifier predicts a +1. Initially, every point has the same weight.
1. Identify all the points in the above diagram that will have their weights increased after adding the 
initial decision stump (adjustments to AdaBoost sample weights after the initial stump is used) (2 
marks)
2. On the same diagram, draw another decision stump that could be considered in the next round of 
boosting. Include the boundary where it makes its decision and indicate which side will result in a +1 
prediction. (2 marks)
3. Will the second basic classifier likely get a larger importance score in the group compared to the first 
one? To put it another way, will ??2 > ??1? Just a short explanation is needed (Calculations are not 
required). (3 marks)
4. Suppose you have trained two models on the same set of data: one with AdaBoost and another with a 
Random Forest approach. The AdaBoost model does better on the training data than the Random 
Forest model. However, when tested on new, unseen data, the Random Forest model performs better. 
What could explain this difference in performance? What can be done to make the AdaBoost model 
perform better? (3 marks)
Question 3: K-Means and GMM Clustering (7 marks)
Students are required not to use AI models, such as ChatGPT, for assistance with this question. 
You should give clear analysis steps and explain the relevant concepts using your own words.
1. Reflect on the provided data for training and analyze the outcomes of K-Means and GMM techniques. 
Can we anticipate identical centroids from these clustering methods? Please state your reasoning. (3
marks)
2. Determine which of the given cluster assignments could be a result of applying K-means clustering, 
and which could originate from GMM clustering, providing an explanation for your reasoning. (4 
marks)
Question 4 - Reinforcement Learning (25 marks)
Students are required not to use AI models, such as ChatGPT, for assistance with this question. 
You should give clear analysis steps and explain the relevant concepts using your own words.
1. Describe the five key components of reinforcement learning using the graph below, explain each of 
the components and their relationships. (10 marks.)
import gym
import numpy as np
env = gym.make('CartPole-v1')
state_space_size = env.observation_space.shape[0]
action_space_size = env.action_space.n
q_table = np.zeros((state_space_size, action_space_size))
learning_rate = 0.1
discount_factor = 0.99
epsilon = 0.1
num_episodes = 1000
# Q-learning algorithm
for episode in range(num_episodes):
 state = env.reset()
 done = False
 while not done:
 # Exploration-exploitation strategy
 if np.random.uniform(0, 1) < epsilon:
 action = env.action_space.sample() # Explore
 else:
 action = np.argmax(q_table[state, :]) # Exploit
 # Take action and observe the next state and reward
 next_state, reward, done, _ = env.step(action)
 # Update Q-value using the Q-learning formula
 q_table[state, action] = (1 - learning_rate) * q_table[state, action] +
 learning_rate * (reward + discount_factor * np.max(q_table[next_state, :]))
 # Move to the next state
 state = next_state
# Testing the learned policy
total_reward = 0
state = env.reset()
while True:
 action = np.argmax(q_table[state, :])
 state, reward, done, _ = env.step(action)
 total_reward += reward
 if done:
 break
print(f"Total reward: {total_reward}")
2. The questions below refer to the above code example:
a) What is the significance of the exploration-exploitation strategy in reinforcement learning, and how is 
it implemented in the code? (5 marks)
b) How would you change this code to use deep learning? You don’t need to write the code, only 
describe the major changes you would make and explain the advantage of deep learning approaches 
over the Q-table. (5 marks)
c) Describe the current reward function for Cartpole. Design a reward function of your own and explain 
your reward function. (5 marks)

.ip… 1/2
# to student: this is an code snapshot showing how to use ray tune framework to 
# you are responsible for completing the code, debugging and making sure it work
import sklearn.datasets
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
from sklearn import metrics
import os
from ray.tune.schedulers import ASHAScheduler
from sklearn.model_selection import train_test_split
from ray import tune
from ray import train
def train_rf(config: dict, data=None):
 # Initialize the RandomForestClassifier with the configuration
 classifier = RandomForestClassifier(
 n_estimators=config["n_estimators"],
 max_depth=config["max_depth"],
 min_samples_split=config["min_samples_split"],
 min_samples_leaf=config["min_samples_leaf"],
 class_weight="balanced",
 random_state=42
 )
 
 # Fit the RandomForestClassifier on the training data
 X_train = data[0]
 y_train = data[1]
 X_validation = data[2]
 y_validation = data[3]
 # To Be filled: Train your Random Forest Classifier here
 # To Be filled: Evaluate the classifier on the validation set here and get e
 
 # Send the accuracy to Ray Tune
 train.report({'accuracy': accuracy})
# note that X_train, y_train, X_validation, y_validation are your training and v
tunable_function = tune.with_parameters(train_rf, data=[X_train, y_train, X_vali
def tune_random_forest(smoke_test=False):
 # Define the search space for hyperparameters
 search_space = {
 "n_estimators": # setup your search space here
 "max_depth": # setup your search space here
 "min_samples_split": # setup your search space here
 "min_samples_leaf": # setup your search space here
 }
 
 # Define the scheduler for early stopping
 scheduler = ASHAScheduler(
 max_t= # setup your ASHA parameter here,
 grace_period=# setup your ASHA parameter here,
 reduction_factor=# setup your ASHA parameter here
 )
 
 # Set up the tuner
 tuner = tune.Tuner(
 tunable_function,
In [ ]:

.ip… 2/2
 tune_config=tune.TuneConfig(
 metric="accuracy",
 mode="max",
 scheduler=scheduler,
 num_samples=1 if smoke_test else 200,
 ),
 param_space=search_space,
 )
 
 # Execute the tuning process
 results = tuner.fit()
 
 return results
# Run the tuning function
best_results = tune_random_forest(smoke_test=False)
best_trial = best_results.get_best_result(metric="accuracy", mode="max")
# Get the best trial's hyperparameters
best_params = best_trial.config
# Print the best hyperparameters
print("Best hyperparameters found were: ", best_params)
# Initialize a new RandomForestClassifier with the best hyperparameters
best_rf = RandomForestClassifier(**best_params, random_state=42)
# The remaining part of your code continues ....

請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 



 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:AcF633代做、Python設計編程代寫
  • 下一篇:SCC312代做、代寫Java編程語言
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗證碼平臺 幣安官網下載 歐冠直播 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    主站蜘蛛池模板: 日本三级久久 | 第一福利丝瓜av导航 | 国产精品美女久久久久久久久 | 欧美在线日韩 | 涩涩av| 精品国产123| 日日操日日 | 亚洲成人精品av | 另类亚洲激情 | 操操日 | 国产一区黄色 | 免费观看成人 | 欧洲亚洲综合 | 亚洲黄页在线观看 | 亚洲天堂高清 | 国产精品久久免费视频 | 午夜香蕉网 | 91免费看片网站 | 亚洲免费成人网 | 国产精品系列在线播放 | aaa国产精品 | 欧美性猛交xx乱大交 | 亚洲精华国产精华精华液网站 | 中文字幕在线观看视频免费 | av作品在线观看 | 谁有av网址| 欧美大片网站 | 色网视频| 久久狠狠高潮亚洲精品 | 成年激情网 | 久久不卡日韩美女 | 国产亚洲精品久久久久久无几年桃 | 色成人综合 | 自拍偷拍av | 欧美精品1区2区 | av综合在线观看 | √资源天堂中文在线 | 99热中文| 日本理伦片午夜理伦片 | 在线天堂av | 黄色免费在线视频 | 日韩精品一区二区视频 | 国产精品一页 | 欧美日韩亚洲在线 | 免费一级全黄少妇性色生活片 | 成人高清免费 | 色婷婷激情av | 不卡av一区 | 午夜动态图| 欧美日韩视频免费观看 | 亚洲精品久久久久久久久久吃药 | 九九少妇| 亚洲天堂导航 | 免费激情av | av免费网 | 久久这里只有精品6 | 国产伦精品视频一区二区三区 | 欧美 日韩 成人 | 欧美伊人| 五月天激情综合 | 亚洲宅男天堂 | 香蕉二区 | 91丝袜一区在线观看 | 午夜视频网站 | 玖玖爱在线精品视频 | www视频在线观看 | 欧美一区二区在线 | 中国久久久久 | 91久久在线| 成人免费午夜 | 日日夜夜狠 | 亚洲最大福利视频 | 国产专区一区二区三区 | 国产精品第二页 | 亚洲性生活大片 | 欧美老肥婆性猛交视频 | 69av视频在线观看 | 欧美第五页 | 亚洲男人的天堂在线视频 | 欧美超碰在线观看 | 国产色站 | 黑料视频在线 | 国产成人久久精品77777综合 | 久久综合久久鬼 | 正在播放国产一区 | 91午夜视频在线观看 | 自拍偷拍欧美 | 欧美精品久久久久久久久老牛影院 | 天天躁夜夜操 | 自拍视频第一页 | 在线观看污视频网站 | 天天爽夜夜爽 | 日本三级久久 | 欧美日本在线观看 | 国产成人午夜精品 | 日日干夜夜撸 | 超碰中文字幕 | 天天网综合 | 亚洲毛片网 | 成人精品视频在线 | 丁香啪啪 | 亚洲自拍另类 | 香蕉在线播放 | 欧美激情第三页 | 久久男女| 日韩av在线资源 | 看黄网站在线观看 | 午夜精品影院 | 夜夜躁很很躁日日躁麻豆 | 中国久久久久 | 91久久综合亚洲鲁鲁五月天 | 色噜噜在线播放 | 精品综合在线 | 噜噜噜网站 | 在线免费观看黄色小视频 | 国产激情网站 | 久久精品在线 | 做爰视频毛片视频 | 亚洲男人天堂视频 | 永久免费看mv网站入口亚洲 | 国产精品99久久久久久人免费 | 性久久久久久久久久久 | av无线看| 91视频在线视频 | 国产一级二级av | 91理论片| 丹丹的呻吟声1一7 | 九九综合 | 日本在线免费观看 | 一级片黄色片 | 亚洲男女啪啪 | 国产欧美大片 | 偷拍亚洲欧美 | 午夜肉体高潮免费毛片 | 国产成年视频 | 91久久一区| 亚洲乱人伦 | 亚洲综合色一区 | 国产精品成人免费一区二区视频 | 激情婷婷六月 | 很色的网站 | 奇米影视在线 | 国产成人在线免费视频 | 日韩孕交 | 天天色播 | 色综合久久久 | 亚洲精品福利网 | 91干干干| 国产一区视频在线 | 亚洲精品国产精品国自产 | 吻胸摸激情床激烈视频 | 国产亚洲性欧美日韩在线观看软件 | 久久久夜| 久久这里精品 | 在线午夜av | 黄色一级大片免费版 | 夜夜爽88888免费视频4848 | 亚洲午夜久久久久久久国产 | 精品九九在线 | 欧美成人综合 | 亚洲成人麻豆 | 综合激情网站 | 非洲黑寡妇性猛交视频 | 少妇毛片视频 | 午夜h| 欧美一区二区在线免费观看 | 色婷婷导航| 日韩精品视频免费在线观看 | 9色av | 亚洲福利视频在线 | 色婷婷一区二区 | 啊v天堂在线观看 | 波多野结衣一区二区三区 | 最近中文字幕免费mv视频7 | 国产精品日韩一区二区 | 欧美成人性色 | 国产精品羞羞答答在线观看 | 青青av在线| 国产区精品视频 | 在线免费观看毛片 | 91在线视频 | 国产精品视频免费在线观看 | 我要看一级黄色片 | 一区二区不卡在线 | 午夜婷婷在线播放 | 亚洲欧洲成人在线 | 国产毛片一区 | 日本免费一区视频 | 亚洲欧美色图 | 极品尤物av | 日本少妇中文字幕 | 老司机成人网 | 在线国产播放 | 91麻豆精品国产91久久久久久 | 久草色视频 | 依人在线观看 | 激情网综合 | 欧美日韩乱 | 高跟鞋肉丝交足91 | 日本理伦片午夜理伦片 | 国产剧情av在线播放 | 日本a一级片| 亚洲精品乱码久久久久久9色 | 亚洲国产精品成人久久 | 午夜看片网站 | 欧美午夜激情视频 | 夜夜骚av | 五月婷婷综合在线 | 性欧美13一14内谢 | 亚洲精品毛片一区二区三区 | 国产床上视频 | 日韩在线观看不卡 | 黄色午夜| 欧美亚洲一区二区三区 | 在线一级视频 | 中文字幕一区2区3区 | 狠狠草视频 | 亚洲日本国产精品 | 欧美日韩在线观看一区二区 | 91亚洲视频在线观看 | 怡红院一区 | 88av在线看 | 亚洲精品一二区 | 亚洲精品国产a | 亚洲高清视频免费观看 | 亚洲成人777 | 亚洲一区欧美 | 日韩av色图| 国产精品久久久久久久久久妇女 | 一级片免费的 | 99热超碰在线 | 校园春色亚洲激情 | 国产福利资源在线 | 亚洲视频免费在线 | 好看的中文字幕第一页 | 国产欧美在线看 | 热久久最新 | 国产第一福利影院 | 五月激情四射网 | 黄瓜视频在线免费观看 | 99自拍视频在线观看 | 久久婷婷热 | 精品一区中文字幕 | 乐播av一区二区三区 | 亚洲大胆 | 91亚洲国产成人精品一区二三 | 久久综合国产伦精品免费 | 一区二区三区四区中文字幕 | 最近国语视频在线观看免费播放 | 色香蕉影院 | 澳门av在线 | 噜噜色图| 日韩午夜在线 | 国产精品久久久久一区二区国产 | 亚洲成av人片一区二区密柚 | 国产精品一区二区三区在线播放 | 日日夜夜精品免费视频 | 性生活三级视频 | 一区二区三区免费观看视频 | 久久蜜桃香蕉精品一区二区三区 | 97自拍偷拍视频 | 中文字幕在线亚洲精品 | 成人性生活视频 | 伊人网av| 国产精品第八页 | 午夜免费毛片 | 国产精品乱码一区二三区小蝌蚪 | 天堂网2018 | 亚洲精品乱码久久久久久写真 | 午夜一区二区三区四区 | 狠狠免费视频 | 欧美日韩精品中文字幕 | 国产精品久久久久久久久久 | 亚欧激情 | 亚洲欧美另类在线视频 | 国产区视频在线观看 | 老鸭窝一区二区 | 国产在线一二 | 91精品国产综合久久久蜜臀 | 欧美激情综合色综合啪啪五月 | 亚洲精品入口 | 天天操夜夜拍 | 天天操天天射天天 | 亚洲素人 | 色老头在线视频 | 日韩大片免费观看 | 久久精品国产一区 | 91香蕉久久| 欧美777| 亚洲最新在线视频 | 欧美亚一区二区三区 | 欧美.www| 91午夜在线 | 欧美特黄一级大片 | 啪啪网站视频 | 日韩综合在线 | 亚洲欧美日韩在线一区 | 日韩免费视频一区二区视频在线观看 | 国产欧美视频在线观看 | 在线免费毛片 | 亚洲精品网站在线观看 | 91高潮大合集爽到抽搐 | 免费在线看黄网站 | 国产特级乱淫免费看 | 国产精品有码 | 91无打码| аⅴ资源新版在线天堂 | 91视频合集 | 久久久免费网站 | 中文字幕高清一区 | 天天天天天干 | 亚洲第一页综合 | 99久久免费精品国产免费高清 | 久久精品10 | 国产免费av网站 | 九九热九九热 | 欧美一级二级三级视频 | 福利久久久| 综合av在线 | 久久国产精品免费视频 | 欧美精品日韩 | 国内av自拍| 精品日韩一区二区三区av动图 | 九九热精品在线观看 | av免费入口 | h视频在线看 | 少妇av网 | 奇米影视在线播放 | 午夜精品久久久久久久久久久久久蜜桃 | 亚洲天堂成人在线观看 | 久久精品国产亚洲a∨蜜臀 意大利三级全黄裸体 | 成人做爰69片免费看 | 久免费一级suv好看的国产 | 秋霞网av| 极品尤物在线观看 | 黄色性视频 | 久久露脸国语精品国产91 | 又粗又色又爽一区二区三区 | 亚洲性视频网站 | 色婷婷久久综合中文久久蜜桃av | 曰韩av| 国产高清久久久 | 日韩精品视频免费看 | 7799精品视频 | 精品亚洲网站 | a级片在线免费看 | 最近日韩免费视频 | www.久久精品 | 一区二区三区免费在线观看 | 亚洲欧美日韩国产精品 | 亚洲喷水 | 99在线视频观看 | 国产男女av| 福利精品在线 | a天堂视频| 色视频免费在线观看 | 九一在线视频 | 一二三区视频在线观看 | 国产成人黄色 | 最近好看的2019中文在线 | 一区二区三区不卡视频 | 韩国性猛交╳xxx乱大交 | 久久免费公开视频 | 国内精品嫩模av私拍在线观看 | 成年人国产网站 | 日本黄色录象 | 91麻豆成人精品国产免费网站 | 中文字幕在线一区 | 亚洲永久免费视频 | 青青艹在线观看 | 国产毛片毛片毛片毛片毛片毛片 | 日韩免费三级 | 日本高潮视频 | 久插视频 | a级在线观看视频 | 国产成人av一区二区三区不卡 | 天天色天天色 | 亚洲国产精品成人综合久久久 | 爱看av在线 | 人人爽人人做 | 国产成人精品一区二区三区四区 | av免费看在线 | 欧美a∨亚洲欧美亚洲 | 在线步兵区| 国产视频在线观看一区二区 | 91视频中文字幕 | 亚洲综合色成人 | 国产一区二区三区在线免费观看 | 91丨九色丨蝌蚪丨老版 | 黑森林av导航 | 国产精品久久久久久亚洲影视公司 | 97精品视频在线 | 日韩毛片在线播放 | 国产一区二区三区影视 | 久久久噜噜噜久久 | 天天操天天草 | www在线视频| 色爽 av| 亚洲第一成网站 | 久久精品久久久久久久久久久久久 | avwww | 蜜桃视频污 | 黄色一级大片在线免费看产 | 夜鲁鲁鲁夜夜综合视频欧美 | 色网站免费看 | 超碰碰碰碰 | 久久久久亚洲天堂 | 综合五月网 | 爽爽窝窝午夜精品一区二区 | 中文字幕日韩精品视频一区视频二区 | 最新国产拍偷乱偷精品 | 一级欧美黄色大片 | 奇米网久久| 欧美成人乱码一区二区三区 | 欧美一级一区二区三区 | 日韩欧美www | 免费的黄色大片 | 国产精品12 | 一级黄色a| 欧美老肥婆性猛交视频 | 91久久中文字幕 | 夜夜穞天天穞狠狠穞 | 亚洲国产日韩a在线播放性色 | 国产69精品久久久久久野外 | 在线看国产精品 | 波多野在线播放 | 午夜精品久久久久久久91蜜桃 | 黄色片a级| 天天看天天做 | 欧美麻豆视频 | 伊人98| 亚洲a人| 在线免费成人网 | 你懂的网址在线观看 | 久久久久97国产 | 欧美wwwwww| 97视频免费观看 | 久久午夜夜伦鲁鲁片 | 国产精品视频一区二区三区不卡 | 免费在线视频一区二区 | 久久久性 | 天天操天天爱天天干 | 毛片网页 | 91视频免费观看 | 色老头在线视频 | av在线免费网址 | 日韩欧美精品中文字幕 | 草草影院国产 | 成年人免费黄色片 | 国产午夜精品一区二区理论影院 | 在线免费91 | 又紧又大又爽精品一区二区 | 成人一区二区视频 | 亚韩精品 | 青青青国产在线 | 国产91免费看 | 国产精品自在在线午夜出白浆 | 在线a网| 艳母在线视频 | jzzijzzij亚洲成熟少妇在线播放 一区二区视频在线播放 | 超碰人人cao | 开心激情站 | 中文永久免费观看 | 已婚少妇露脸日出白浆 | 日韩视频免费在线 | 偷拍超碰| 黑人操亚洲女 | 亚洲福利网址 | 中文字幕日韩第一页 | 国产怡红院 | 日韩一级黄 | 色综合99| 横恋母在线观看 | 99久久精品一区二区三区 | 少妇人妻一级a毛片 | 亚洲天堂小说 | 亚洲精品国产一区二区三区四区在线 | 欧美久久一区二区 | 天天综合网在线 | 午夜av一区 | 久久美女免费视频 | 成人h动漫精品一区 | 伊人av一区 | 伊人9999| 国产成人亚洲精品 | 亚洲欧美日韩精品久久久 | 午夜男人的天堂 | 免费的性爱视频 | 新版天堂资源中文8在线 | 一区二区三区四区蜜桃 | 福利视频一区二区 | 亚洲女同tvhd | 国产女人爽到高潮久久久4444 | 性久久久久 | 日日弄天天弄美女bbbb | 欧美日韩福利视频 | 99精品在免费线偷拍 | 午夜视频成人 | 午夜伊人网 | 欧美视频在线免费 | 久久艹av | 国产色吧 | 国产一级片在线 | 欧美在线视频免费播放 | 久久久久这里只有精品 | av在线不卡免费观看 | jizzzxxxx | 性色av网站| 日韩免费视频网站 | 依人成人综合网 | 久久b | 91久久国产综合久久91 | 午夜香蕉视频 | 久操免费在线视频 | 超碰操| 国产成人福利视频 | av作品在线 | 99精品视频在线播放免费 | 黄色wwww | 国产欧美一区二区三区鸳鸯浴 | 亚洲爱爱综合网 | 92看片淫黄大片看国产片 | 久久资源总站 | 欧美视频一区二区三区四区 | 日本一区二区三区精品视频 | 国产精品激情 | 一区二区视频在线 | 欧美成人专区 | 蜜桃av噜噜一区二区三区小说 | 国产伦精品一区二区三区免费 | 毛片毛片毛片毛片毛片毛片 | 国产精品伦视频看免费三 | 国产网站免费观看 | 91超级碰 | 国产专区一区二区三区 | 国产97色在线 | 樱花视频在线免费观看 | 国产永久免费 | 日韩欧美毛片 | 国产在线观看h | av999| 欧美天堂| 97视频国产 | 成人免费视频一区二区三区 | 亚洲国产资源 | 色在线免费观看 | 男女av | 一区二区三区观看 | 伊人资源网 | 欧美一级性片 | 91av高清| 法国意大利性经典xxxxx交换 | japanese在线 | 欧美在线三级 | 天天操天天碰 | 小草av在线 | 操久久久| 成人福利网 | 久久不射网站 | 国产精品久久久久久久久免费看 | 国产精品一区二区三区免费视频 | 亚洲小视频在线 | 亚洲久久在线 | 婷婷久久综合 | 国产成人一区 | 欧美色图一区二区三区 | 亚洲国产无| 亚洲女同在线观看 | 日韩一级片视频 | 免费黄色av网站 | 伊人伊人伊人伊人 | www.伊人久久 | 国产又粗又猛又爽又黄的 | 天天爽夜夜爽夜夜爽 | 国产日韩欧美高清 | 亚洲丁香视频 | 一级特黄a大片免费 | 天天澡天天狠天天天做 | 亚洲精品美女久久久 | 黄色片视频网站 | 五月情网 | 欧美射射射 | 国产毛片久久 | 波多野结衣在线一区 | 亚洲成人手机在线 | 日韩久久影院 | 黄色片视频免费在线观看 | 天天骑夜夜操 | av网站免费在线看 | av导航网| 亚洲欧美自拍偷拍视频 | 蜜臀久久99精品久久久 | 人人干在线视频 | 亚洲免费激情视频 | 一内黄色片 | 国产做爰xxxⅹ高潮视频12p | 久操视频在线免费观看 | 成年人在线观看视频网站 | 国产区在线观看 | 国产精品一区二区三区久久 | 欧洲成人精品 | 一区二区三区欧美在线 | 亚洲一区欧美日韩 | 一级黄色免费 | 国产日韩视频一区 | 91新视频| 在线日韩视频 | 天天艹天天 | 91久久久久久久 | 成人深夜福利在线观看 | 欧美成人三级 | 亚洲女同中文字幕 | 男人深夜网站 | 2018国产精华国产精品 | 手机免费看av片 | √资源天堂中文在线 | 久草国产在线观看 | 在线观看国产小视频 | 欧美理论在线观看 | 亚洲精品一区二区在线 | 伊人久久久 | 天天干人人干 | 天天躁夜夜躁狠狠躁 | 一本久草 | a天堂中文在线观看 | 国内精品99 | 精品1区2区3区 | 日日噜噜噜夜夜爽爽狠狠视频97 | 福利二区三区 | aaa在线播放 | 国产黄a三级三级看三级 | 激情综合亚洲 | 国产绿帽刺激高潮对白 | 欧美激情片在线观看 | 我要看一级黄色片 | 国产69av| 亚洲欧美另类中文字幕 | 不卡视频在线播放 | 黄色激情在线观看 | 国产成人精品综合在线观看 | 在线免费国产精品 | 99re国产精品视频 | 亚洲欧美激情精品一区二区 | 色婷婷狠狠操 | 成人a在线观看 | 亚洲图片小说综合 | 不卡黄色 | 中文字幕一区二区三区乱码不卡 | 欧美性一区二区 | 一区二区麻豆 | 欧美黄色短视频 | 久久天| 久久99热精品 | 欧美视频黄| 天天干,天天操,天天射 | 天堂av成人 | 色噜噜网站 | 日本少妇与黑人 | 在线精品视频一区 | 欧美日韩高清在线 | 一级黄色片免费播放 | 欧美成人黄 | 成人免费观看视频 | 草久视频在线观看 | 中文字幕在线日韩 | 免费国产一区二区三区 | 茄子视频色 | 夜夜se| 粉嫩aⅴ一区二区三区 | 欧美精品久久久久久久久老牛影院 | 国产欧美日韩中文字幕 | 精品国产乱码久久久久久三级人 | 精品久久久久久久久久久久久久久久久 | 五月天丁香视频 | 午夜精品一区二区三区免费视频 | 久久99精品久久久久久园产越南 | 成年人激情视频 | 国产日韩大片 | 四虎视频在线观看 | 亚洲高清中文字幕 | 澳门av在线 | 国产精品xxxx喷水欧美 | 亚洲成人网页 | 免费av导航| 91视频国产区 | 欧美在线性爱视频 | 一级做a爰片性色毛片 | 国产特黄大片aaaa毛片 | 成人精品免费在线观看 | 狠狠躁夜夜躁人爽 | 日韩在线免费视频 | 色悠悠av| 久久99精品久久久久久无毒不卡8 | 国产原创在线 | 欧美肥老妇| 亚洲蜜臀av乱码久久精品蜜桃 | 久久动态图 | 成人黄色在线观看 | 欧美精品在线看 | 国产91综合 | 日本少妇裸体 | 国内偷拍av | 久久免费激情视频 | 日本在线观看免费 | 亚洲精品乱码久久久久久写真 | 波多野结衣福利视频 | 国产又黄又硬又粗 | www.超碰97 | 免费观看黄色一级视频 | 九九热精品视频在线播放 | 性巴克成人免费网站 | 亚洲精品观看 | 亚洲精品网站在线观看 | 国产婷婷一区二区三区久久 | 亚洲欧洲日本在线 | 国产精品9999 | 99精品国产成人一区二区 | 欧美精品免费在线观看 | 免费观看黄色一级片 | 欧美30p| 日韩欧美亚洲精品 | 国产一级做a爱片久久毛片a | 成年人天堂 | 木下凛凛子av一区二区三区 | 伊人动漫 | 四色成人av永久网址 | 午夜色网| 国产激情第一页 | 一本到免费视频 | 黄色一级大片在线免费看国产一 | www.久久99 | 夜夜欢影院 | 中文天堂在线一区 | 一级黄色片免费看 | 露出调教羞耻91九色 | 91网站免费在线观看 | 97天堂网 | 国产永久在线观看 | 黄色免费小视频 | 69视频免费看 | 色人综合| 新超碰在线| 国产一级一区二区 | japanese久久| 99热这里是精品 | 7777av| 亚洲资源在线 | 亚洲国产色图 | 欧美大片免费看 | 日韩不卡视频在线观看 | 免费av免费看 | 日韩欧美国产成人 | 在线播放a| 亚洲天堂精品在线观看 | 最新国产露脸在线观看 | 尤物精品 | 日本久久综合 | 91精品免费观看 | 亚洲女人天堂 | 欧美日韩在线视频免费播放 | 一区二区三区欧美 | 亚洲欧美强伦一区二区 | 婷婷色在线视频 | 四虎精品在线 | 亚洲精品视 | 色婷av| 亚洲视频在线播放免费 | 欧美在线 | 亚洲 | 日本va欧美va欧美va精品 | 在线观看免费视频黄 | 精品少妇一二三区 | 日韩av中文字幕在线播放 | 亚洲精品aaaa| 在线观看成人黄色 | 91最新视频| 亚洲一区二区三区乱码 | 国产福利视频一区二区 | 色开心| 成年人天堂 | 国产免费高清av | 黄色一二三区 | 欧美精品少妇 | 国产女人高潮时对白 | 俄罗斯嫩小性bbwbbw | 亚洲一区中文字幕永久在线 | 国产一级一级va | 在线亚洲精品 | 欧美成人免费网站 | 成人动漫在线观看视频 | 和漂亮岳做爰3中文字幕 | 伊人影院网 | 久草福利在线视频 | 最新日韩中文字幕 | 伊人伦理 | 久久久久久久久久综合 | 成人免费一级伦理片在线播放 | 国产精品av在线 | 亲女禁h啪啪宫交 | 国产激情在线播放 | 国产精华7777777 | 成人毛片18女人毛片 | 亚洲va欧美va国产综合久久 | 亚洲国产不卡 | 免费超碰在线 | 欧美三级免费观看 | 综合久久99 | h片免费观看 | 国产亚洲福利 | 精品国产精品三级精品av网址 | 国产丰满农村老妇女乱 | 亚洲一视频 | 天天操夜夜草 | 星空大象mv高清在线观看国语 | 色爽av| 国产操片| 成人免费视频一区 | 国产婷婷在线观看 | 日韩精品在线视频 | 亚洲精品久久久久久久不卡四虎 | 日韩在线视频不卡 | 日韩免费高清视频网站 | 国产综合欧美 | 中文字幕乱码中文字幕 | 欧类av怡春院| 色综合亚洲 | 波多野结衣视频在线播放 | 四虎影库在线播放 | 亚洲综合在线视频 | 丁香花免费高清完整在线播放 | 日韩在线视频一区二区三区 | 伊人久久中文 | 黄色三级网站 | 在线国产精品视频 | 悠悠色综合 | av成人在线免费观看 | 性一交一乱一色一视频麻豆 | 最近更新中文字幕第一页 | 亚洲精品h| 国产在线三区 | xxxx午夜 | 国产a久久麻豆入口 | 国产最新自拍视频 | 国产在线精品成人欧美 | 成人久久18免费网站 | 国产xxxx裸体肉体大胆147 | 国产性hd| 一区二区三区视频观看 | 97青青草| 亚洲视频自拍 | 亚洲欧洲一区二区 | 国产剧情精品 | wwwwww色| 国产公妇在线观看中文版 | 97中文字幕 | 99热日韩| 摸一摸操一操 | 亚洲国产精品久久 | 找黑人做爰富婆国产 | 永久av在线 | 少妇久久久久久 | 成人公开免费视频 | 国产成人精品av | 日本在线视频免费 | 精品久久久一区 | 九一在线视频 | 91九色网站| 免费看国产片在线观看 | 国产欧美精品区一区二区三区 | 国产乡下妇女做爰视频 | 成人交性视频免费看 | 欧美亚洲激情视频 | 成年人黄色| 黄色在线播放网站 | 久久亚洲精品石原莉奈 | 亚洲爆爽 | 精品一区二区三区久久 | 色999视频 | 国产乱码精品一区 | 国产视频在 | 日韩精品在线免费视频 | 99久久精品国产一区二区成人 | av黄色在线观看 | 欧美精品一卡二卡 | 日韩久久一区二区 | 亚洲精品h | 色av性av丰满av | 亚洲国产精华液网站w | 欧美日韩高清免费 | 亚洲黄色天堂 | 在线观看色 | 婷婷丁香花五月天 | 成人午夜精品久久久久久久网站 | 国产亚洲精品久久久久久移动网络 | 97超碰中文字幕 | 69色堂 | 精品国产www | 人成免费| 欧美一级做性受免费大片免费 | 奇米视频在线 | 可以直接看的毛片 | 国产www| 亚洲欧美日韩在线不卡 | 国产一区91 | www.18av| 成人在线视频一区二区 | 在线色一区 | 加勒比成人av | 丁香六月色婷婷 | 好男人在线视频www 国产suv精品一区二区33 | 亚洲激情网 | 男人av网站 | 黑白配高清国语在线观看 | 可以直接看的毛片 | 青娱乐自拍视频 | 香蕉色网| 亚洲最大的网站 | 色午夜视频 | 国产永久在线 | 无码少妇一区二区三区 | 久久五月亭 | 性国产精品| 99热这里只有精品9 在线免费观看黄色片 | 午夜不卡在线 | 亚洲欧美另类综合 | 亚洲国产精品自在拍在线播放 | 欧美精品亚洲精品日韩精品 | 亚洲国产精品成人av | h在线观看视频 | 男女在线视频 | 亚洲va久久久噜噜噜久久 | 91国产一区| 国产免费一区二区三区最新不卡 | 国产一区成人 | 国产污污网站 | 尤物在线视频 | 色99视频| 超碰加勒比 | 射在线 | 国内精品久久久久久久久 | 日韩一区二区三免费高清在线观看 | 中文字幕一区二区三区免费看 | 欧美激情偷拍 | 亚洲欧美国产一区二区 | 欧美交| 久久午夜网 | 国产伊人久久 | 中文字幕高清在线观看 | 国产一区二区视频网站 | 六月婷婷网 | 黑人黄色大片 | 国产第一页屁屁影院 | 亚洲大成色 | 亚洲观看黄色网 | 国产99视频在线观看 | 国产一级片一区二区三区 | 亚洲国产tv| 欧美在线观看一区二区三区 | 国产精品亲子伦对白 | 国产午夜av | 欧美日韩国产精品成人 | 国产另类精品 | 国产精品视频在线免费观看 | 久久狠狠高潮亚洲精品 | 自拍偷拍 亚洲 | av一区三区| 国产精品视频亚洲 | 波多野在线播放 | 丹丹的呻吟声1一7 | 日韩不卡高清视频 | 婷婷狠狠爱 | 国产毛片久久久久久久 | 欧美h网站| 久久综合久久综合久久 | 国产精品久久久久久999 | 日韩一级免费 | 国产chinasex对白videos麻豆 | 不卡av网站在线观看 | 亚洲午夜久久久久 | 中文字幕 视频一区 | 中国久久久久 | 国产天堂在线观看 | 自拍偷拍欧美亚洲 | 天天夜夜操 | 亚洲精品乱码久久久久久写真 | 久久久久久久黄色片 | 欧美日韩aa | 在线精品免费视频 | 韩国精品视频一区 | 国产欧美成人 | 黑人巨大精品欧美一区免费视频 | 国产 第1190页 | 一个综合色 | 成人性视频网 | 91中文字幕在线视频 | 天堂在线| 国产精品久久久久久一区二区三区 | a毛片视频| 男女午夜免费视频 | 久久久久久国产精品视频 |