狠狠综合久久久久综合网址-a毛片网站-欧美啊v在线观看-中文字幕久久熟女人妻av免费-无码av一区二区三区不卡-亚洲综合av色婷婷五月蜜臀-夜夜操天天摸-a级在线免费观看-三上悠亚91-国产丰满乱子伦无码专区-视频一区中文字幕-黑人大战欲求不满人妻-精品亚洲国产成人蜜臀av-男人你懂得-97超碰人人爽-五月丁香六月综合缴情在线

COMP 315 代做、代寫 java 語言編程

時間:2024-03-10  來源:  作者: 我要糾錯



1 Introduction
Assignment 1: Javascript
COMP 315: Cloud Computing for E-Commerce March 5, 2024
A common task in cloud computing is data cleaning, which is the process of taking an initial data set that may contain erroneous or incomplete data, and removing or fixing those elements before formatting the data in a suitable manner. In this assignment, you will be tested on your knowledge of JavaScript by implementing a set of functions that perform data cleaning operations on a dataset.
2 Ob jectives
By the end of this assignment, you will:
• Gain proficiency in using JavaScript for data manipulation.
• Be able to implement various data cleaning procedures, and understand the significance of them. • Have developed problem-solving skills through practical application.
3 Problem description
For this task, you have been provided with a raw dataset of user information. You must carry out the following series of operations:
• Set up a Javascript class in the manner described in Section 4.
• Convert the data into the appropriate format, as highlighted in Section 5
• Fix erroneous values where possible e.g. age being a typed value instead of a number, age being a real number instead of an integer, etc; as specified in Section 6.
• Produce functions that carry out the queries specified in Section 7.
 Data name Title
First name
Middle name Surname Date of birth Age
Email
Note
This value may be either: Mr, Mrs, Miss, Ms, Dr, or left blank.
Each individual must have one. The first character is capitalised and the rest are lower case, with the exception of the first character after a hyphen.
This may be left blank.
Each individual must have one.
This must be in the format of DD/MM/YYYY.
All data were collected on 26/02/2024, and the age values should reflect this.
The format should be [first name].[surname]@example.com. If two individuals have the same address then an ID is added to differentiate them eg john.smith1, john.smith2, etc
Table 1: The attributes that should be stored for each user
         1

4 Initial setup
Create a Javascript file called Data Processing.js. Create a class within that file called Data Processing. Write a function within that class called load CSV that takes in the filename of a csv file as an input, eg load CSV (”User Details”). The resulting data should be saved locally within the class as a global variable called raw user data. Write a function called format data, which will have no variables are a parameter. The functionality of this method is described in Section 5. Write a function called clean data, which will also have no parameters. The functionality of this method is similarly described in Section 6.
5 Format data
Within the function format data, the data stored within raw user data should be processed and output to a global variable called formatted user data. The data are initially provided in the CSV format, with the delimiter being the ’,’ character. The first column of the data is the title and full name of the user. The second and third columns are the date of birth, and age of the user, respectively. Finally, the fourth column is the email of the user. Ensure that the dataset is converted into the appropriate format, outlined in Table 1. This data should be saved in the JSON format (you may use any built in JavaScript method for this). The key for each of the values should be names shown in the ’Data name’ column, however converted to lower case with an underscore instead of a space character eg ’first name’.
6 Data cleaning
Within the function clean data, the data cleaning tasks should be carried out, loading the data stored in formatted user data. All of this code may be written within the clean data function, or may be handled by a series of functions that are called within this class. The latter option is generally considered better practice. Examine the data in order to determine which values are in the incorrect format or where values may be missing. If a value is in the incorrect format then it must be converted to be in the correct format. If a value is missing or incorrect, then an attempt should be made to fill in that data given the other values. The cleaned data should be saved into the global variable cleaned user data.
7 Queries
Often, once the data has been processed, we perform a series of data analysis tasks on the cleaned data. Each of these queries are outlined in Table 2. Write a function with the name given in the ’Function name’ column, that carries out the query given in the corresponding ’Query description’. The answer should be returned by the function, and not stored locally or globally.
 Function name
most common surname average age
youngest dr
most common month
Query description
What is the most common surname name?
What is the average age of the users, given the values stored in the ’age’ column? This should be a real number to 3 significant figures.
Return all of the information about the youngest individual in the dataset with the title Dr.
What is the most common month for individuals in the data set?
        percentage titles
 What percentage of the dataset has each of the titles? Return this in the form of an array, following the order specified in the ’Title’ row of Table 1. This should included the blank title, and the percentage should be rounded to the nearest integer using bankers rounding.
  percentage altered
 A number of values have been altered between formatted user data and cleaned user data. What percentage of values have been altered? This should be a real number to 3 significant figures.
  Table 2: The queries that should be carried out on the cleaned data
2

8 Marking
The marking will be carried out automatically using the CodeGrade marking platform. A series of unit tests will be ran, and the mark will correspond with how many of those unit tests were successfully executed. Your work will be submitted to an automatic plagiarism/collusion detection system, and those exceeding a threshold will be reported to the Academic Integrity Officer for investigation regarding adhesion to the university’s policy https://www.liverpool.ac.uk/media/livacuk/tqsd/code-of-practice-on-assessment/appendix L cop assess.pdf.
9 Deadline
The deadline is 23:59 GMT Friday the 22nd of March 2024. Late submissions will have the typical 5% penalty applied for each day late, up to 5 days. Submissions after this time will not be marked. https: //www.liverpool.ac.uk/aqsd/academic-codes-of-practice/code-of-practice-on-assessment/
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫 CSSE7030 Connect 4
  • 下一篇:代做ACS61012、代寫ACS61012 Machine Vision
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗證碼平臺 幣安官網下載 歐冠直播 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    狠狠综合久久久久综合网址-a毛片网站-欧美啊v在线观看-中文字幕久久熟女人妻av免费-无码av一区二区三区不卡-亚洲综合av色婷婷五月蜜臀-夜夜操天天摸-a级在线免费观看-三上悠亚91-国产丰满乱子伦无码专区-视频一区中文字幕-黑人大战欲求不满人妻-精品亚洲国产成人蜜臀av-男人你懂得-97超碰人人爽-五月丁香六月综合缴情在线
  • <dl id="akume"></dl>
  • <noscript id="akume"><object id="akume"></object></noscript>
  • <nav id="akume"><dl id="akume"></dl></nav>
  • <rt id="akume"></rt>
    <dl id="akume"><acronym id="akume"></acronym></dl><dl id="akume"><xmp id="akume"></xmp></dl>
    三上悠亚免费在线观看| 日韩久久一级片| 日本免费观看网站| 国产视频九色蝌蚪| 91丨porny丨探花| 欧美视频在线观看网站| 日本熟妇人妻xxxx| 婷婷五月综合缴情在线视频| 精品免费久久久久久久| 美国av在线播放| 91香蕉视频网址| 日韩在线视频在线| 妞干网在线观看视频| 内射国产内射夫妻免费频道| 日本www在线视频| 欧美精品无码一区二区三区| 中文字幕 91| 路边理发店露脸熟妇泻火| 男人j进女人j| 国产免费黄视频| 99热这里只有精品在线播放| 午夜xxxxx| 日韩欧美国产综合在线| 欧美xxxxx在线视频| 小泽玛利亚视频在线观看| 中文字幕 欧美日韩| 国产精品一二三在线观看| 成人免费视频91| 天天色综合社区| 国产1区2区3区中文字幕| 波多野结衣家庭教师在线| 日本新janpanese乱熟| 在线观看成人免费| 蜜臀av午夜一区二区三区| 韩国一区二区在线播放| 日韩精品xxxx| 老司机午夜网站| 久久综合久久色| 九九久久九九久久| 向日葵污视频在线观看| 精品人妻少妇一区二区| 午夜久久福利视频| 欧美日韩一道本| 300部国产真实乱| 精品少妇无遮挡毛片| 男女日批视频在线观看| 99中文字幕在线| 国产裸体舞一区二区三区| 黄色一级大片免费| 伊人网在线综合| 成人精品小视频| 精品久久一二三| 999久久欧美人妻一区二区| 亚洲激情在线看| 国产成人无码av在线播放dvd| 强开小嫩苞一区二区三区网站| 亚洲激情在线观看视频| 日韩国产欧美亚洲| www.九色.com| 被灌满精子的波多野结衣| 日本三日本三级少妇三级66| 天堂av手机在线| 成人亚洲免费视频| 欧美三级午夜理伦三级富婆| 国产免费视频传媒| 久久综合伊人77777麻豆最新章节| 97久久国产亚洲精品超碰热| 天天做天天爱天天高潮| 香蕉视频色在线观看| 91高清国产视频| 男生操女生视频在线观看| 91pony九色| 欧美性受xxxx黒人xyx性爽| 一级黄色高清视频| 午夜啪啪福利视频| 妞干网视频在线观看| 精品无码一区二区三区在线| 精品视频免费在线播放| 国产a视频免费观看| 中文字幕无码不卡免费视频| 天堂av在线网站| 九九九九九伊人| 欧洲xxxxx| 久久久噜噜噜www成人网| 日本中文字幕高清| 天天久久综合网| 你真棒插曲来救救我在线观看| 亚洲熟妇无码另类久久久| 日韩一级片播放| 大桥未久一区二区| 黄色免费福利视频| 色婷婷成人在线| 四虎4hu永久免费入口| 国产白丝袜美女久久久久| 天美星空大象mv在线观看视频| 中文字幕成人在线视频| 久久亚洲精品无码va白人极品| 欧美精品自拍视频| 网站在线你懂的| www.浪潮av.com| 亚洲视频在线不卡| 国产一区二区三区精彩视频| 五月天婷婷影视| 国产在线观看福利| 国产大尺度在线观看| 777久久久精品一区二区三区| 自拍偷拍一区二区三区四区| 99久久免费观看| 在线免费黄色网| 又色又爽又高潮免费视频国产| 国产又大又长又粗又黄| 日韩精品一区中文字幕| 国产日产欧美一区二区| 韩国中文字幕av| 亚洲乱码中文字幕久久孕妇黑人| 9l视频白拍9色9l视频| 欧美日韩午夜爽爽| 男人女人黄一级| 69精品丰满人妻无码视频a片| 人妻丰满熟妇av无码区app| 久久精品国产sm调教网站演员| 6080国产精品| 涩涩网站在线看| 亚洲国产日韩欧美在线观看| 亚洲精品乱码久久久久久自慰| 99热这里只有精品免费| 日本丰满大乳奶| 搡的我好爽在线观看免费视频| www.xxx亚洲| 欧美日韩在线成人| 亚洲精品无码久久久久久| 草草久久久无码国产专区| www.av片| 国产主播在线看| 亚洲乱码中文字幕久久孕妇黑人| 91九色国产ts另类人妖| 精品一区二区成人免费视频| 在线观看免费视频污| 91大神免费观看| 中文字幕一区久久| 午夜啪啪福利视频| a天堂资源在线观看| 黄页网站大全在线观看| 国产午夜伦鲁鲁| 99免费视频观看| 亚洲天堂网2018| 免费的av在线| 日韩精品xxxx| 亚洲xxxx2d动漫1| 91热视频在线观看| 欧妇女乱妇女乱视频| 97成人在线观看视频| 亚洲福利精品视频| 四虎影院一区二区| 和岳每晚弄的高潮嗷嗷叫视频| 91精品91久久久中77777老牛| aⅴ在线免费观看| 亚洲av毛片在线观看| 99久久久精品视频| 日韩毛片在线免费看| 欧美美女一级片| www.avtt| 欧美一级特黄a| 日本大胆人体视频| 国产一线二线三线在线观看| 五月天av影院| 国产网站免费在线观看| 亚欧美在线观看| 日本a视频在线观看| 911av视频| 日本免费一级视频| 成年在线观看视频| 亚洲欧美日韩一级| 免费观看国产精品视频| 黄色小视频免费网站| 欧日韩免费视频| 精品一区二区成人免费视频| 欧美精品第三页| 久久av高潮av| 99re99热| 日本超碰在线观看| 日韩精品一区二区三区不卡| 国产精品自拍合集| 麻豆md0077饥渴少妇| 亚洲一区日韩精品| 日本成人中文字幕在线| 国产精品一色哟哟| 男插女免费视频| 久久人人爽人人片| 日本中文字幕影院| wwwwwxxxx日本| 午夜dv内射一区二区| 69堂免费视频| 国产av麻豆mag剧集| 欧美一区二区视频在线播放| 黄色片免费网址| 中文字幕一区二区在线观看视频 | 国内精品国产三级国产aⅴ久| 欧美变态另类刺激| 国产91在线视频观看|