狠狠综合久久久久综合网址-a毛片网站-欧美啊v在线观看-中文字幕久久熟女人妻av免费-无码av一区二区三区不卡-亚洲综合av色婷婷五月蜜臀-夜夜操天天摸-a级在线免费观看-三上悠亚91-国产丰满乱子伦无码专区-视频一区中文字幕-黑人大战欲求不满人妻-精品亚洲国产成人蜜臀av-男人你懂得-97超碰人人爽-五月丁香六月综合缴情在线

AI6126代做、Python設計程序代寫

時間:2024-04-12  來源:  作者: 我要糾錯



2023-S2 AI6126 Project 2
Blind Face Super-Resolution
Project 2 Specification (Version 1.0. Last update on 22 March 2024)
Important Dates
Issued: 22 March 2024
Release of test set: 19 April 2023 12:00 AM SGT
Due: 26 April 2023 11:59 PM SGT
Group Policy
This is an individual project
Late Submission Policy
Late submissions will be penalized (each day at 5% up to 3 days)
Challenge Description
Figure 1. Illustration of blind face restoration
The goal of this mini-challenge is to generate high-quality (HQ) face images from the
corrupted low-quality (LQ) ones (see Figure 1) [1]. The data for this task comes from
the FFHQ. For this challenge, we provide a mini dataset, which consists of 5000 HQ
images for training and 400 LQ-HQ image pairs for validation. Note that we do not
provide the LQ images in the training set. During the training, you need to generate
the corresponding LQ images on the fly by corrupting HQ images using the random
second-order degradation pipeline [1] (see Figure 2). This pipeline contains 4 types
of degradations: Gaussian blur, Downsampling, Noise, and Compression. We will
give the code of each degradation function as well as an example of the degradation
config for your reference.
Figure 2. Illustration of second-order degradation pipeline during training
During validation and testing, algorithms will generate an HQ image for each LQ face
image. The quality of the output will be evaluated based on the PSNR metric
between the output and HQ images (HQ images of the test set will not be released).
Assessment Criteria
In this challenge, we will evaluate your results quantitatively for scoring.
Quantitative evaluation:
We will evaluate and rank the performance of your network model on our given 400
synthetic testing LQ face images based on the PSNR.
The higher the rank of your solution, the higher the score you will receive. In general,
scores will be awarded based on the Table below.
Percentile
in ranking
≤ 5% ≤ 15% ≤ 30% ≤ 50% ≤ 75% ≤ 100% *
Scores 20 18 16 14 12 10 0
Notes:
● We will award bonus marks (up to 2 marks) if the solution is interesting or
novel.
● To obtain more natural HQ face images, we also encourage students to
attempt to use a discriminator loss with a GAN during the training. Note that
discriminator loss will lower the PSNR score but make the results look more
natural. Thus, you need to carefully adjust the GAN weight to find a tradeoff
between PSNR and perceptual quality. You may earn bonus marks (up to 2
marks) if you achieve outstanding results on the 6 real-world LQ images,
consisting of two slightly blurry, two moderately blurry, and two extremely
blurry test images. (The real-world test images will be released with the 400
test set) [optional]
● Marks will be deducted if the submitted files are not complete, e.g., important
parts of your core codes are missing or you do not submit a short report.
● TAs will answer questions about project specifications or ambiguities. For
questions related to code installation, implementation, and program bugs, TAs
will only provide simple hints and pointers for you.
Requirements
● Download the dataset, baseline configuration file, and evaluation script: here
● Train your network using our provided training set.
● Tune the hyper-parameters using our provided validation set.
● Your model should contain fewer than 2,276,356 trainable parameters, which
is 150% of the trainable parameters in SRResNet [4] (your baseline network).
You can use
● sum(p.numel() for p in model.parameters())
to compute the number of parameters in your network. The number of
parameters is only applicable to the generator if you use a GAN.
● The test set will be available one week before the deadline (this is a common
practice of major computer vision challenges).
● No external data and pre-trained models are allowed in this mini
challenge. You are only allowed to train your models from scratch using the
5000 image pairs in our given training set.
Submission Guidelines
Submitting Results on CodaLab
We will host the challenge on CodaLab. You need to submit your results to CodaLab.
Please follow the following guidelines to ensure your results are successfully
recorded.
● The CodaLab competition link:
https://codalab.lisn.upsaclay.fr/competitions/18233?secret_key
=6b842a59-9e76-47b1-8f56-283c5cb4c82b
● Register a CodaLab account with your NTU email.
● [Important] After your registration, please fill in the username in the Google
Form: https://forms.gle/ut764if5zoaT753H7
● Submit output face images from your model on the 400 test images as a zip
file. Put the results in a subfolder and use the same file name as the original
test images. (e.g., if the input image is named as 00001.png, your result
should also be named as 00001.png)
● You can submit your results multiple times but no more than 10 times per day.
You should report your best score (based on the test set) in the final report.
● Please refer to Appendix A for the hands-on instructions for the submission
procedures on CodaLab if needed.
Submitting Report on NTULearn
Submit the following files (all in a single zip file named with your matric number, e.g.,
A12345678B.zip) to NTULearn before the deadline:
● A short report in pdf format of not more than five A4 pages (single-column,
single-line spacing, Arial 12 font, the page limit excludes the cover page and
references) to describe your final solution. The report must include the
following information:
○ the model you use
○ the loss functions
○ training curves (i.e., loss)
○ predicted HQ images on 6 real-world LQ images (if you attempted the
adversarial loss during training)
○ PSNR of your model on the validation set
○ the number of parameters of your model
○ Specs of your training machine, e.g., number of GPUs, GPU model
You may also include other information, e.g., any data processing or
operations that you have used to obtain your results in the report.
● The best results (i.e., the predicted HQ images) from your model on the 400
test images. And the screenshot on Codalab of the score achieved.
● All necessary codes, training log files, and model checkpoint (weights) of your
submitted model. We will use the results to check plagiarism.
● A Readme.txt containing the following info:
○ Your matriculation number and your CodaLab username.
○ Description of the files you have submitted.
○ References to the third-party libraries you are using in your solution
(leave blank if you are not using any of them).
○ Any details you want the person who tests your solution to know when
they test your solution, e.g., which script to run, so that we can check
your results, if necessary.
Tips
1. For this project, you can use the Real-ESRGAN [1] codebase, which is based
on BasicSR toolbox that implements many popular image restoration
methods with modular design and provides detailed documentation.
2. We included a sample Real-ESRGAN configuration file (a simple network, i.e.,
SRResNet [4]) as an example in the shared folder. [Important] You need to:
a. Put “train_SRResNet_x4_FFHQ_300k.yml” under the “options” folder.
b. Put “ffhqsub_dataset.py” under the “realesrgan/data” folder.
The PSNR of this baseline on the validation set is around 26.33 dB.
3. For the calculation of PSNR, you can refer to ‘evaluate.py’ in the shared folder.
You should replace the corresponding path ‘xxx’ with your own path.
4. The training data is important in this task. If you do not plan to use MMEditing
for this project, please make sure your pipeline to generate the LQ data is
identical to the one in the configuration file.
5. The training configuration of GAN models is also available in Real-ESRGAN
and BasicSR. You can freely explore the repository.
6. The following techniques may help you to boost the performance:
a. Data augmentation, e.g. random horizontal flip (but do not use vertical
flip, otherwise, it will break the alignment of the face images)
b. More powerful models and backbones (within the complexity
constraint), please refer to some works in reference.
c. Hyper-parameters fine-tuning, e.g., choice of the optimizer, learning
rate, number of iterations
d. Discriminative GAN loss will help generate more natural results (but it
lowers PSNR, please find a trade-off by adjusting loss weights).
e. Think about what is unique to this dataset and propose novel modules.
References
[1] Wang et al., Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure
Synthetic Data, ICCVW 2021
[2] Wang et al., GFP-GAN: Towards Real-World Blind Face Restoration with Generative
Facial Prior, CVPR 2021
[3] Zhou et al., Towards Robust Blind Face Restoration with Codebook Lookup Transformer,
NeurIPS 2022
[4] C. Ledig et al., Photo-realistic Single Image Super-Resolution using a Generative
Adversarial Network, CVPR 2017
[5] Wang et al., A General U-Shaped Transformer for Image Restoration, CVPR 2022
[6] Zamir et al., Restormer: Efficient Transformer for High-Resolution Image Restoration,
CVPR 2022
Appendix A Hands-on Instructions for Submission on CodaLab
After your participation to the competition is approved, you can submit your results
here:
Then upload the zip file containing your results.
If the ‘STATUS’ turns to ‘Finished’, it means that you have successfully uploaded
your result. Please note that this may take a few minutes.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp


















 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代做IDEPG001、代寫c/c++,Java編程設計
  • 下一篇:CSI 2120代做、代寫Python/Java設計編程
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗證碼平臺 幣安官網下載 歐冠直播 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    狠狠综合久久久久综合网址-a毛片网站-欧美啊v在线观看-中文字幕久久熟女人妻av免费-无码av一区二区三区不卡-亚洲综合av色婷婷五月蜜臀-夜夜操天天摸-a级在线免费观看-三上悠亚91-国产丰满乱子伦无码专区-视频一区中文字幕-黑人大战欲求不满人妻-精品亚洲国产成人蜜臀av-男人你懂得-97超碰人人爽-五月丁香六月综合缴情在线
  • <dl id="akume"></dl>
  • <noscript id="akume"><object id="akume"></object></noscript>
  • <nav id="akume"><dl id="akume"></dl></nav>
  • <rt id="akume"></rt>
    <dl id="akume"><acronym id="akume"></acronym></dl><dl id="akume"><xmp id="akume"></xmp></dl>
    在线观看国产中文字幕| 午夜啪啪免费视频| 欧美a级免费视频| 激情久久综合网| www.亚洲高清| 亚洲精品免费一区亚洲精品免费精品一区 | 国产精品亚洲a| 欧美激情亚洲天堂| 国产精品国产对白熟妇| 欧美成人免费在线观看视频| 男人日女人逼逼| 人妻无码视频一区二区三区| 一区二区成人网| 久久久国产精华液999999 | 国产真实老熟女无套内射| 黄色小视频大全| 国产精品久久久久7777| 国产男女在线观看| 日本高清久久久| 米仓穗香在线观看| 国产美女无遮挡网站| 久久久久久蜜桃一区二区| aaaaaaaa毛片| 大陆极品少妇内射aaaaa| www.日日操| 青草全福视在线| 国产二区视频在线播放| 一区二区三区欧美精品| 免费网站永久免费观看| 日韩av一二三四| 影音先锋男人的网站| 凹凸国产熟女精品视频| 国产毛片久久久久久| 久久国产午夜精品理论片最新版本| 欧美日韩第二页| 4444在线观看| 午夜免费看视频| 国内自拍在线观看| 女人床在线观看| 性生活免费在线观看| 免费看毛片的网址| 日韩欧美色视频| 国产激情在线观看视频| 免费人成自慰网站| 丰满女人性猛交| www.日本一区| 日本中文字幕高清| 国产91对白刺激露脸在线观看| 天天综合成人网| 欧美大尺度做爰床戏| 国产视频一视频二| 精品无码国产一区二区三区av| 国产农村妇女精品久久| 韩国中文字幕av| 不要播放器的av网站| ww国产内射精品后入国产| 久久久久久久香蕉| 乱子伦一区二区| 91免费视频污| 亚洲激情在线看| 亚洲欧美天堂在线| 一级黄色在线播放| 久久黄色片网站| 爱豆国产剧免费观看大全剧苏畅| 久久久久久久久久久视频| 欧美深夜福利视频| 又粗又黑又大的吊av| 日韩在线综合网| 能在线观看的av| 免费看污黄网站| 涩多多在线观看| 日韩中文在线字幕| 日本阿v视频在线观看| 日韩国产一级片| 欧美综合在线观看视频| 国产成人无码av在线播放dvd| 丰满少妇被猛烈进入高清播放| 日本福利视频在线| 性欧美极品xxxx欧美一区二区| 热久久精品免费视频| 天堂av在线8| 成人黄色片免费| 97在线免费公开视频| www.com黄色片| 四虎4hu永久免费入口| 少妇人妻在线视频| wwwwxxxx日韩| wwwwww欧美| jizz欧美激情18| 欧美 国产 精品| 国产亚洲欧美在线视频| 视频在线观看免费高清| 99在线观看视频免费| 老司机午夜av| 国产911在线观看| 中文字幕乱码人妻综合二区三区| 在线观看国产一级片| 97在线国产视频| 福利片一区二区三区| 国产96在线 | 亚洲| 色91精品久久久久久久久| 日韩av高清在线看片| 91性高潮久久久久久久| 日本在线观看a| 国产精品日韩三级| 九一精品久久久| 成年人黄色片视频| 国产精品一色哟哟| 欧美一级xxxx| chinese少妇国语对白| 欧美黄网在线观看| 性久久久久久久久久久久久久| 欧美s码亚洲码精品m码| 91国在线高清视频| 国产高清免费在线| 九九热99视频| 成人精品视频一区二区| www.av91| 日本男女交配视频| 超碰超碰超碰超碰超碰| 欧美日韩精品区别| 乌克兰美女av| 91欧美视频在线| 亚洲天堂av线| 国产嫩草在线观看| 天天爽人人爽夜夜爽| 国产一级不卡毛片| 久久久久久三级| 欧美视频免费播放| 国产一区视频免费观看| 男人天堂网视频| 成人久久久久久久久| 九九九九免费视频| 欧美日韩性生活片| 国产偷人视频免费| 少妇性l交大片| 国产一二三区av| 加勒比av中文字幕| 久久久久久久久久久久久国产| 国产精品久久成人免费观看| 玖玖精品在线视频| 国产精品一线二线三线| 97成人在线免费视频| 亚洲成熟丰满熟妇高潮xxxxx| 欧美激情国产精品日韩| 久久撸在线视频| 大桥未久一区二区| 国产av天堂无码一区二区三区| 精品无码一区二区三区在线| 色诱视频在线观看| 色噜噜狠狠一区二区三区狼国成人| 午夜xxxxx| 国产精品无码免费专区午夜| 国产91在线免费| 人人爽人人爽av| 日本久久久网站| 九九热免费精品视频| 久久人人爽人人片| 国产精品宾馆在线精品酒店| 亚洲另类第一页| 男的插女的下面视频| 激情五月亚洲色图| 欧美视频在线第一页| 亚洲黄色a v| 成人一级生活片| 中文字幕国产高清| 午夜肉伦伦影院| 8x8x华人在线| 久久撸在线视频| 精品人妻一区二区三区四区在线| 一道本在线免费视频| 国产毛片视频网站| 黄色一级视频播放| 免费看污黄网站| 黄色一级视频片| 8x8x华人在线| 青青草原国产在线视频| av免费在线播放网站| 欧美又粗又长又爽做受| 国产探花在线观看视频| 天天操天天爽天天射| 成 年 人 黄 色 大 片大 全| 午夜激情影院在线观看| 一区二区三区视频在线观看免费| 黄色片免费在线观看视频| 中文字幕亚洲影院| 高潮一区二区三区| 欧美婷婷精品激情| 日本va中文字幕| 国产精品天天av精麻传媒| 日韩av综合在线观看| 日韩一级性生活片| 免费看欧美黑人毛片| 国产成人一区二区三区别| 国产欧美自拍视频| 日本一道在线观看| xxxxxx在线观看| 黄色一级视频播放| 亚洲爆乳无码精品aaa片蜜桃| 亚洲天堂第一区|