国产一区二区三区香蕉-2020国产成人精品视频-欧美日韩亚洲三区-www.91桃色-最美情侣中文第5季免费观看-久草毛片-国产成人精品av-男女猛烈拍拍拍无挡视频-中文字幕看片-色视频欧美一区二区三区-久久久久久久久久影院-一级a爱片久久毛片-精品久久久久久无码中文字幕一区-欧美色图网站-无码色偷偷亚洲国内自拍-国产一区在线免费观看

FIT5225 代做、代寫 java,c++語言程序

時間:2024-04-21  來源:  作者: 我要糾錯


 


Assignment 1
FIT5225 2024 SM1
CloudDetect:
Creating and Deploying an Image Object Detection Web Service within a Containerised Environment in Clouds
1 Synopsis and Background
This project aims to build a web-based system that we call CloudDetect. It will allow end-users to send an image to a web service hosted by Docker containers and receive a list of objects detected in their uploaded image. The project will make use of the YOLO (You Only Look Once) library, a state-of-the- art real-time object detection system, and OpenCV (Open-Source Computer Vision Library) to perform the required image operations/transformations. Both YOLO and OpenCV are Python-based open-source computer vision and machine learning software libraries. The web service will be hosted as containers in a Kubernetes cluster. Kubernetes will be used as the container orchestration system. The object detection web service is also designed to be a RESTful API that can use Python’s Flask library. We are interested in examining the performance of CloudDetect by varying the rate of requests sent to the system (demand) using load generation tools like Locust and the number of existing Pods within the Kubernetes cluster (resources).
This assignment has the following objectives:
• Writing a python web service that accepts images in JSON object format, uses YOLO and OpenCV to process images, and returns a JSON object with a list of detected objects.
• Building a Docker Image for the object detection web service.
• Creating a Kubernetes cluster on virtual machines (instances) in the Oracle Cloud Infrastructure
(OCI).
• Deploying a Kubernetes service to distribute inbound requests among pods that are running the object detection service.
• Writing a load generation scripts using Loucust.
• Testing the system under varying load and number of pods conditions. You can focus on these objectives one after another to secure partial marks.
2 The web service - [10 Marks]
You are required to develop a RESTful API that allows clients to upload images to the server. You must use Flask to build your web service and any port over 1024. Your Flask server should be able to handle multiple clients concurrently. Each image should be sent to the web service using an HTTP POST request containing a JSON object with a unique ID (e.g. UUID) and a base64-encoded image. Since an
1

image is binary data, it cannot be directly inserted into JSON. You must convert the image into a textual representation that can then be used as a normal string. The most common way to encode an image into text is using the base64 method. A sample JSON request used to send an image could be as follows:
{
"id":"06e8b9e0-8d2e-11eb-8dcd-0242ac130003",
"image":"YWRzZmFzZGZhc2RmYXNkZmFzZGYzNDM1MyA7aztqMjUzJyBqaDJsM2 ..."
}
The web service creates a thread per request and uses YOLO and OpenCV python libraries to detect objects in the image. As a suggestion, you can begin with the image encoding part of the JSON message, consider developing your web service and testing it with basic Postman HTTP requests. Once you’ve confirmed that your web service functions correctly, you can proceed to create your client requests in accordance with the webservice API using Locust. For each image (request), your web service returns a JSON object with a list of all objects detected in that image as follows:
{
"id":"The id from the client request",
"objects": [
}
    {
    "label": "human/book/cat/...",
    "accuracy": a real number between 0-1,
    "rectangle": {
        "height": number,
        "left": number,
        "top": number,
        "width": number
} }
... ]
The “id” is the same id sent by the client along with the image. This is used to associate an asynchronous response with the request at the client-side. The “label” represents the type of object detected, e.g., cat, book, etc. “Accuracy” represents the precision in object detection and a rectangle is a JSON object showing the position of a box around the object in the image. A sample response is shown below:
{
"id": "2b7082f5-d31a-54b7-a46e-5e4889bf69bd",
"objects": [
    {
      "label": "book",
      "accuracy": 0.7890481352806091,
      "rectangle": {"height": 114, "left": 380, "top": 363, "width": 254}
}, {
      "label": "cat",
      "accuracy": 0.6877481352806091,
      "rectangle": {"height": 114, "left": 180, "top": 63, "width": 254}
}
2

] }
You are required to use the yolov3-tiny framework to develop a fast and reliable RESTful API for object detection. You will use pre-trained network weights, so there is no need to train the object detection program yourself1. We have provided the yolov3-tiny config file and weights in the yolo_tiny_configs.zip file. Note that this network is trained on the COCO dataset (http://cocodataset.org/#home). We have also provided you with a sample group of images (128 images in inputfolder in a zip file) from this dataset, and you should use them for testing2.
3 Dockerfile - [10 Marks]
Docker builds images by reading the instructions from a file known as Dockerfile. Dockerfile is a text file that contains all ordered commands needed to build a given image. You are required to create a Dockerfile that includes all the required instructions to build your Docker image. You can find Dockerfile reference documentation here: https://docs.docker.com/engine/reference/builder/.
To reduce complexity, dependencies, file sizes, and build times, avoid installing extra or unnecessary packages just because they might be “nice to have.” For example, you don’t need to include a text editor in your image. Optimisation of your Dockerfile while keeping it easy to read and maintain is important.
4 Kubernetes Cluster - [10 Marks]
You are tasked to install and configure a Kubernetes cluster on OCI VMs. For this purpose, you are going to install K8s on three VM instances on OCI (All your VM instances should be Intel machines, shape VM.Standard.E4.Flex, 8GB Memory and 4 OCPUs). You need to setup a K8s cluster with 1 controller and 2 worker nodes that run on OCI VMs. You need to install Docker engine on VMs. You should configure your K8s cluster with Kubeadm.
5 Kubernetes Service - [20 Marks]
After you have a running Kubernetes cluster, you need to create service and deployment configurations that will in turn create and deploy required pods in the cluster. The official documentation of Kubernetes contains various resources on how to create pods from a Docker image, set CPU and/or memory limitations and the steps required to create a deployment for your pods using selectors. Please make sure you set CPU request and CPU limit to “0.5” and memory request and limit to “512MiB” for each pod.
Initially, you will start with a single pod to test your web service and gradually increase the number as described in the Section 7. The preferred way of achieving this is by creating replica sets and scaling them accordingly.
Finally, you are required to expose your deployment to enable communication with the web service running inside your pods. You can make use of Service and NodePort to expose your deployment. You will need to call the object detection service from various locations as described in the next section. OCI restricts access to your VMs through its networking security measures. Therefore, you should ensure that your controller instance has all the necessary ports opened and that necessary network configurations,
1For your reference, a sample network weights for yolov3-tiny can be found at https://pjreddie.com/media/files/ yolov3-tiny.weights and required configuration files and more information can be found at https://github.com/ pjreddie/darknet and https://github.com/pjreddie/darknet/tree/master/cfg
2For your reference, the full COCO dataset can be found at http://images.cocodataset.org/zips/test2017.zip. 3
 
including OCI “Security Lists,” are properly set up. You may also need to open ports on instance-level firewall (e.g. firewall or iptables).
6 Locust load generation - [10 Marks]
Create a Locust script to simulate concurrent users accessing your RESTful API. Ensure the API can handle the load and respond promptly without crashing or experiencing significant delays. Your next task involves monitoring and recording relevant performance metrics such as response time, query per second (QPS), and error rate during load testing.
First, install Locust (if not already installed) and familiarize yourself with its documentation to create load-testing scenarios. Configure the Locust script to gradually increase the number of users and sustain load to identify potential bottlenecks. Your script should be able to send 128 images provided to the RESTful API deployed in the Kubernetes cluster.
Ensure the script encodes the images to base64 and embeds them into JSON messages as specified in Section 2 for seamless integration. note: you can reuse part of your client code developed in 2.
7 Experiments and Report - [40 Marks]
Your next objective is to test your system for the maximum load your service can handle under a different number of resources (pods) in your cluster. When the system is up and running, you will run experiments with various number of pods (available resources) in the cluster.
You need to conduct two sets of experiments: one where the Locust client runs locally on the master node of Kubernetes, and another where it runs on a VM instance in your pt-project in Nectar. The number of pods must be scaled to 1, 2, 4, and 8. Considering the limited CPU and Memory allocated to each pod (CPU request and limit: 0.5, memory request and limit: 512MiB), increasing the number of pods enhances resource accessibility.
Your goal is to determine the maximum number of concurrent users the system can handle before experiencing failures. To achieve this, vary the number of concurrent users in the Locust client to analyze the impact of increased load on the deployed service. You can set the spawn rate to a reasonable value to gradually increase the number of users for various pod configurations. For each trial, continuously send 128 images to the server in a loop until the response time stabilizes and the success rate remains at 100%.
The response time of a service is the duration between when an end-user makes a request and when a response is sent back. This data is automatically collected by Locust. When the first unsuccessful request occurs, note the maximum number of concurrent users, decrease by it by one, and record this number. Then rerun the experiment with the recorded number of concurrent users and a spawn rate of 1 user/second to ensure a 100% success rate.
Finally, report your results along with the average response time in table format, as shown below: Table 1: Experiment Results
   # of Pods
1 2 4 8
Max Users
Nectar
Avg. Response Time (ms)
Max Users
Master
Avg. Response Time (ms)
  Ensure to run each experiment multiple times to verify the correctness of your experiment and con- sistency of average response time values across various experiments. This is because network traffic and
4

some other environmental aspects might affect your experiments.
In your report, discuss this table and justify your observations. To automate your experimentation and
collect data points, you can write a script that automatically varies the parameters for the experiments and collects data points.
Your report must be a maximum 1500 words excluding your table and references. You need to include the following in your report:
• The table as explained above.
• Explanation of results and observations in your experiments (1000 words).
• Select three challenges of your choice from the list of distributed systems challenges discussed in the first week seminar, give a practical example from your project that illustrates that challenge and how it is addressed in your system (500 words).
Use 12pt Times font, single column, 1-inch margin all around. Put your full name, your tutor name, and student number at the top of your report.
8 Video Recording
You should submit a video recording and demonstrate your assignment. You should cover the following items in your Video Submission for this assignment:
• Web Service - (approx 2 minutes) Open the source code of your application and briefly explain your program’s methodology and overall architecture. Put emphasis on how web service is created, how JSON messages are created.
• Dockerfile - (approx 1 minute) Briefly explain your approach for containerising the application. Show your Dockerfile, explain it briefly.
• Kubernetes Cluster and Kubernetes Service - (approx 4 minutes)
1. Briefly discuss how did you install Docker and Kubernetes and mention which version of these tools are being used. Also mention that which networking module of Kuberentes is used in your setup and why?
2. List your cluster nodes (kubectl get nodes, using -o wide) and explain cluster-info.
3. Show your deployment YAML file and briefly explain it.
4. Show your service configuration file and briefly explain it.
5. Explain and show how your docker image is built and loaded in your Kubernetes cluster.
6. Show your VMs in OCI dashboard.
7. Show the public IP address of the controller node, and its security group. If you have VCN and subnets you can discuss them as well. Explain why you have configured your security groups and port(s).
8. For the 4 pods configuration, show that your deployment is working by listing your pods. Then show your service is working and can be reached from outside your controller VM by running the client code on your local computer.
9. Finally, show the log for pods to demonstrate load balancing is working as expected.
• Locust script - (approx 1 minutes) Explain your Locust client and show a quick demo.
5

9

• • • •
• • •
Technical aspects
Keep your setup up and running during the marking period, as we may access and test your service. Do not remove anything before the teaching team’s announcement. Make sure you provide the URL of your service endpoint in the ReadMe.txt.
You can use any programming language. Note that the majority of this project description is written based on Python.
Make sure you install all the required packages wherever needed. For example, python, Yolov3-tiny, opencv-python, flask, NumPy and etc.
When you are running experiments, do not use your bandwidth for other network activities, as it might affect your results.
Since failure is probable in cloud environments, make sure you will take regular backups of your work and snapshot of VMs.
Make sure your Kubernetes service properly distributes tasks between pods (check logs). Make sure you limit the CPU and memory for each pod (0.5 and 512MiB).
It’s important to ensure that your cluster is functioning correctly after each experiment and if rede- ployment might be necessary in some cases.
• Experiments - There is NO need for any discussion regarding this part in the video.
Caution: Please note that if you do not cover the items requested above in your video you will lose marks even if your code and configurations work properly.
Caution: Your video should be no longer than 8 minutes. Please note that any content exceeding this duration will result in penalties. Also, kindly refrain from adjusting the recording speed of your video to 1.5x or 2x. The examiners may penalize you if they are unable to follow your talk at a normal pace or understand the content of your presentation.
Recommendation: To ensure that you do not miss any important points in your video recording and stay on track with time, we recommend preparing a script for yourself beforehand. During the recording session, it can be helpful to refer to your script and read through it as needed. You should also prepare all the commands you need to copy paste before recoding.
10 Submission
You need to submit four files via Moodle:
• A report in PDF format as requested.
• A .ZIP file (not .RAR or other formats) containing the following:
1. Your Dockerfile.
2. Your web service source code.
3. Your Kubernetes deployment and service configurations (YAML files). 4. Your Locust Client script.
5. Any script that automates running experiments if you have one.
6

• A ReadMe.txt file with:
1. The URL to a 8-minute video demonstrating your system. You can use Google Drive,
Panopto, or YouTube, e.g., https://www.youtube.com/watch?v=8frmloR4gTY&t=7s.
2. The URL to your web service endpoint, e.g, http://118.138.43.2:5000/api/object detection.
Please make sure the video can be accessed by the teaching team (all tutors and the lecturer). If you would like to inform us regarding anything else you can use this ReadMe file.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

 

 

 

 

 

 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代做CITS5508、代做 Python 語言程序
  • 下一篇:COMP282代做、C++設計程序代寫
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗證碼平臺 幣安官網下載 歐冠直播 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    主站蜘蛛池模板: 国产不卡一区在线 | 日韩精品――中文字幕 | 亚洲一区二区91 | 中国女人黄色大片 | 国产中文在线视频 | 一区二区久久久久 | 国语对白真实视频播放 | 亚洲欧洲免费视频 | 日韩av首页 | 日韩a∨ | 国产成人高清视频 | 国产一级做a爱片久久毛片a | 国产精品观看 | 91丝袜呻吟高潮美腿白嫩在线观看 | 国产图片区 | 天堂在线视频观看 | 日韩在线播放视频 | 午夜影院a | 国产精品第5页 | www超碰在线 | 69av视频| 精品一区二区三区不卡 | 99精品国产一区二区三区蜜臀 | 免费一区二区三区 | 国产成人精品综合 | 中文字幕亚洲精品 | 日本亲胸视频免费视频大全 | 女同性做爰三级 | 亚洲视频精品在线 | 538国产视频| 久久人久久| 岛国成人在线 | 中文字幕视频免费 | 久久久免费观看视频 | 久久久久久久久久一级 | 日本69少妇 | 欧美不卡高清 | 综合成人在线 | 9999av| 伊人狼人在线 | 狼人综合网| 欧美一区二区在线视频 | 成人欧美一区二区三区 | av喷潮| 91久久免费视频 | 一级裸体片| 武林美妇肉伦娇喘呻吟 | 欧美交受高潮1 | 国产亚洲综合一区二区 | 日韩国产欧美精品 | 成人妖精视频yjsp地址 | 99r久久| 亚洲最新 | 欧美一级黄色片在线观看 | 亚洲性猛交xxxx乱大交 | 自拍三级 | 国产98在线| 免费av软件| 啪啪啪毛片| 粉嫩aⅴ一区二区三区 | 97看片网| 成人综合在线视频 | 欧美日韩在线网站 | 国产理论在线 | 综合色在线观看 | 97精品 | 91精品国产高清一区二区三密臀 | 国产精品久久久久网站 | 一区二区日韩在线观看 | 成人在线视频一区二区 | 亚洲精品日韩丝袜精品 | 欧美小视频在线观看 | 国产色av | 成人区精品一区二区婷婷 | 午夜在线播放视频 | 久久久精品免费视频 | 最新国产中文字幕 | 亚洲最新在线观看 | 久久亚洲一区二区三区四区 | 亚洲精品一二三 | 国产极品久久 | 亚洲毛片一区 | 黄色天堂 | a级片在线免费观看 | 国产成人福利片 | 欧美一级免费片 | 一本加勒比hezyo综合 | 爱情岛黄色 | 成人综合在线视频 | 第一页在线 | 97超碰人人模人人人爽人人爱 | 亚洲精品网站在线观看 | 国产一二三四五区 | 一区二区三区四区av | 亚洲一区二区福利 | 好男人香蕉影院 | 99在线视频精品 | 亚洲涩涩 | 97人人精品 | 在线观看精品国产 | 午夜av免费观看 | 这里只有精品在线观看视频 | 三区在线观看 | 91丝袜一区在线观看 | 久久综合色88 | 日b免费视频 | 性久久久久久久 | 亚洲激情自拍偷拍 | jizz国产精品 | 国内精品嫩模av私拍在线观看 | 中文字幕超碰在线 | 国产欧美日韩久久 | 日本在线观看www | 在线国产一区 | 久久综合亚洲 | 男男做爰猛烈啪啪高 | 免费在线观看黄色 | 亚洲第七页 | 日本一区高清 | 黄色的毛片 | 久久久极品 | 日韩成人福利 | 久久久久久久久久久久久av | 国产精品久久久久久久午夜 | 久久激情影院 | 激情五月综合 | 日本天堂网在线观看 | 国产成人自拍一区 | 亚洲aⅴ在线观看 | 日韩欧美中文字幕在线观看 | www.精品 | 国产男女猛烈无遮挡免费观看网站 | av在线播放器 | 天堂网在线视频 | 99久久精品免费看国产一区二区三区 | 在线中文天堂 | 99综合视频 | 亚州久久久 | 欧美人成在线 | 97色在线视频 | 色先锋影院 | 午夜av网站 | 综合久久久 | 亚洲无打码 | 国产女主播福利 | 国产毛片a | 欧美一区二区三区在线看 | 国产精品99久久 | 刘玥91精选国产在线观看 | 四虎影视精品 | 少妇精品一区二区三区 | 欧美精品99久久久 | 2024日韩中文字幕 | 伊人色网| 亚洲日本欧美日韩高观看 | 欧美日韩中文字幕一区二区三区 | 国产精品18久久久久久久久 | 免费成人黄色片 | 亚欧日韩在线 | 伊人影音 | 狠狠操中文字幕 | 欧洲美一区二区三区亚洲 | 精品少妇一区二区视频在线观看 | a亚洲天堂 | 高清一区二区三区四区 | 五月网站 | 亚洲爽爆| 日韩一区二区视频 | 亚洲老老头同性老头交j | 久久青草视频 | 中文字幕国产 | 亚洲精品合集 | 一级做a爱片久久毛片a高清 | 成人在线免费视频播放 | 久久r热视频| 青青草狠狠干 | 伊人影院99| 久久久久久久中文字幕 | 一级全黄裸体免费观看视频 | 狠狠操天天操 | 欧美 日韩 综合 | 中文字幕日韩精品成人免费区二区 | 九色在线观看 | 四虎新网站| 精品一区二区三区免费看 | 国偷自拍 | 欧美91 | 蜜桃久久久久久久 | 日韩av一级 | 亚洲三级黄 | 潘金莲一级淫片aaaaaa播放 | 国产免费叼嘿网站免费 | 久久久久久久久久久一区二区 | 精品国自产在线观看 | av在线不卡免费观看 | 三级做爰第一次 | 久久久免费网站 | 天天看夜夜看 | 久久久久久久久影院 | 韩国精品久久久 | 日韩精品www | 国产一区在线免费 | 国产18处破外女 | 国产不卡免费视频 | 国内精品嫩模av私拍在线观看 | 日本欧美一本 | 亚洲一级片 | 精品久久久久久久久久久久久久久久久 | 激情久久视频 | 不卡的免费av | 污网站在线播放 | 好吊色在线视频 | 金瓶狂野欧美性猛交xxxx | 欧美午夜视频在线观看 | 亚洲乱码av | 激情综合视频 | 成人久久一区 | 国产精品6| 国产日韩欧美中文字幕 | 日韩丰满少妇 | 日本免费一区视频 | 永久免费看片在线 | 美国av导航 | 国产精品美女一区二区 | 国产白嫩受无套呻吟 | 青青青在线视频 | 亚洲在线免费 | 国色天香婷婷综合网 | 五月六月婷婷 | 成人中文字幕视频 | 日韩日韩 | 台湾色综合 | 波多野结衣一区在线 | 男男做爰猛烈叫床爽爽小说 | 天天做天天爱天天爽综合网 | 中文字幕18页 | 亚洲专区在线 | 日韩精品一二三四区 | 国产日本精品视频 | 亚洲三级小说 | 永久免费国产 | 蜜桃91麻豆精品一二三区 | 日本免费黄色网 | 亚洲国产精品久久久久婷婷老年 | 久久久精品日本 | av网站免费在线 | 黑人干亚洲女人 | 国产高潮失禁喷水爽到抽搐 | 亚洲码无人客一区二区三区 | 成人福利视频网 | 一级特黄aa大片欧美 | 国产精品99视频 | av在线大全 | 一级特黄a | 亚洲国产精品久久久久婷婷老年 | 免费日批网站 | 天天操穴 | 欧美视频一区在线 | 亚洲欧美另类一区 | 奇米影视第四色7777 | 佐佐木明希99精品久久 | 奇米视频在线 | 中文字幕网址在线 | www.成人av | 亚洲日日操 | 韩国三级少妇高潮在线观看 | 激情五月激情综合网 | 不卡av网站 | 五月婷婷丁香 | 国产福利一区二区三区 | 亚洲第一中文字幕 | 久久99精品国产麻豆婷婷洗澡 | 日韩一区欧美一区 | 日本在线一区二区三区 | 自拍啪啪| 神马久久久久久久 | 亚洲熟区| 成人在线看片 | 天堂网av在线播放 | 国产午夜三级 | 国产精品1区2区 | 天天噜 | 色噜噜在线播放 | 好av在线 | 免费久久视频 | 国产精品羞羞答答在线观看 | 国产精品3 | 亚洲高清中文字幕 | 最近中文字幕免费 | 超碰人人艹 | 久久亚洲一区二区三区四区 | 中文字幕视频免费 | 四月婷婷| 粉嫩av懂色av蜜臀av分享 | 欧美成人精品欧美一级乱黄 | 日韩性xxxx| 殴美一区二区 | 色日韩 | 国产一区二区三区亚洲 | 五月激情婷婷网 | 国产美女在线看 | 日韩欧美高清视频 | 小色综合 | 鲁丝一区二区三区 | 男女免费视频 | 国产日韩在线观看视频 | 成人美女视频 | 这里只有精品视频在线播放 | 国产一级在线看 | www.亚洲黄色 | 激情导航| 夜色视频网| 污黄啪啪网 | 日韩αv| 五月婷婷免费视频 | 欧美一级欧美三级 | 亚洲天堂免费在线 | 日韩欧洲亚洲 | 国产精品久久久久久久久久久免费看 | 性色av免费 | 91国产丝袜在线播放 | 国产盗摄精品一区二区酒店 | 激情综合文学 | 亚洲欧美丝袜精品久久久 | 三级a毛片 | 午夜合集 | 男人天堂视频网站 | 成人免费在线观看网站 | 五月天丁香久久 | 亚洲在线a | 好吊视频一二三区 | 亚洲视频 中文字幕 | 伊人99| 青草视频在线观看免费 | 日韩在线激情 | 国产老头和老头xxxx× | 99只有精品 | 一区二区三区观看 | 中文字幕一区二区三区乱码 | 国产精品99在线观看 | 强行侵犯视频在线观看 | 在线一区 | 精品国产一区二区三区性色av | 成人免费一级伦理片在线播放 | 国产黄色高清视频 | 日韩av在线资源 | 色网站入口 | 国产三级av片 | 国产老女人乱淫免费可以 | 中年夫妇啪啪高潮 | 久久久成人精品视频 | 国产一区二区三区视频在线观看 | 激情文学亚洲 | 狠狠躁夜夜躁人 | 91久久捆绑调教美女 | a级免费毛片 | 91精品国产aⅴ一区二区 | 四虎影院在线观看免费 | 手机成人在线视频 | 中国肥胖女人真人毛片 | 91黄色国产 | 自拍偷自拍亚洲精品播放 | 精品在线观看av | 天天操天天插天天干 | 字幕专区码中文欧美在线 | 那个网站可以看毛片 | 欧美日韩精品 | 国产在线第一页 | 精品视频区 | 夫妻啪啪呻吟x一88av | 日本特级a一片免费观看 | 中文字幕免费高清视频 | 亚欧洲精品视频 | 国产a黄| 久久久精品一区二区 | 日本a一级片 | 国产亚洲精品久久久久久移动网络 | 欧美成人午夜视频 | 伊人久久久久久久久久久 | 超碰在线 | 久久午夜鲁丝片午夜精品 | 欧美不卡影院 | 爱逼综合网 | 亚洲精品久久久9婷婷中文字幕 | 日韩色 | 国产在线aaa | av资源网站 | 久久免费偷拍视频 | www.色多多| 精品国精品国产自在久不卡 | 日日日操操操 | 黄色网页免费 | 午夜国产一级一片 | 亚洲一区在线播放 | 韩国三级三级三级a三级 | 久久国产一区二区三区 | 中文在线永久免费观看 | 久艹视频在线观看 | av一区免费观看 | 日本特黄一级片 | 瑟瑟网站在线观看 | 亚洲乱码一区二区三区三上悠亚 | 国产依人在线 | 正在播放亚洲 | www国产91 | 99久久久国产精品 | 狠狠操在线观看 | 欧美日韩一级黄色片 | 日本免费黄色网址 | 最近中文字幕在线免费观看 | 国产精品国产三级国产aⅴ入口 | 黄色片欧美 | 黄色小视频免费看 | 操欧美老女人 | 在线免费观看小视频 | 中文字幕欧美日韩精品 | 精品一区二区三区四区五区 | 日韩精品久久久久久久酒店 | 久草精品在线观看 | 日韩淫| 91久久精| 可以在线观看av的网站 | 亚洲精品乱码久久久久久按摩观 | 亚洲欧美色图视频 | 在线观看91av | 日韩免费视频 | www.久久精品视频 | 美国做爰xxxⅹ性视频 | 欧美日韩中文字幕一区二区三区 | 黄色av三级| 九色视频丨porny丨丝袜 | 日本人毛片 | 性欧美a| 91成人在线播放 | 美妇av| 夏目彩春娇喘呻吟高潮迭起 | 国产乱人伦精品一区二区 | 五月婷婷六月婷婷 | 亚洲成人福利 | av男人的天堂在线 | 精品视频一区二区在线观看 | 狠狠操在线观看 | 91香蕉视频污污 | 青青草黄色 | 日本高清网站 | 久久刺激| 超碰人人人人人 | 国产成人资源 | 亚洲在线综合 | 色婷婷狠狠干 | 亚洲黄色小说视频 | 日韩狠狠操 | av基地| av综合导航| 一级片黄片毛片 | 国产在线麻豆精品观看 | 伊人网网站 | 亚洲欧美日韩图片 | 欧美一级黄色片 | 成人美女免费网站视频 | 神马午夜激情 | 日韩激情视频在线观看 | 久久精品一区二区国产 | 美国三级a三级18 | 天天躁夜夜躁狠狠躁 | 91美女片黄在线观看游戏 | 绯色av一区二区三区在线观看 | 日本在线观看网站 | 日本三级视频 | 国产人人插 | 五月婷中文字幕 | 日本人极品人妖高潮 | 精品久久一区 | 一道久久 | www.男女| 高清欧美性猛交xxxx黑人猛交 | 国产资源久久 | 毛片av免费看 | 午夜国产在线视频 | 18av在线播放| 欧美日韩精品在线 | 国产精选h网站 | 色眯眯视频 | 国产视频91在线 | 国产一二三四在线 | 亚洲综合自拍网 | 免费av一级片 | 人人草av | 亚洲经典一区 | 国产精品自产av一区二区三区 | 亚洲呦呦| 综合一区av | 亚洲一区二区国产 | 热热热av| aaa一区二区 | 少妇久久久久 | 综合黄色 | av免播放器在线观看 | 一区两区小视频 | 久草成人在线 | 91高清免费| www日韩av| 伊人99热| 91毛片观看 | 中文字幕日韩一级 | 一级肉体全黄裸片中国 | www色综合| 国产精品午夜未成人免费观看 | 第一宅男av导航入口 | 超碰视屏 | 国产免费人成xvideos视频 | 一区二区三区在线观看免费 | 日本一区二区三区网站 | 超碰人人做| 午夜你懂的| 亚洲视频色图 | 黄色片hd | 999久久久| 国产网站精品 | 久久依人网 | av国产一区 | 国产成人在线观看免费网站 | 91av日本| 99re视频在线观看 | 免费亚洲婷婷 | 天天干夜夜操 | 婷婷久久精品 | 91视频色 | 1024欧美| 蜜桃av久久久亚洲精品 | 精品国精品国产自在久不卡 | 伊人青青综合 | 天堂av一区二区 | 97福利视频| 狠狠五月天| 日韩黄网站 | 韩国三级三级三级a三级 | 男女免费看| 午夜精品久久久久久久99热浪潮 | 亚洲一区二区三区视频在线 | 欧美大喷水吹潮合集在线观看 | 国产精品啊啊啊 | 日韩精品视频免费 | 91久久久久久久 | 国产一级视频在线播放 | 久久丁香综合五月国产三级网站 | 日日草夜夜草 | 亚洲欧美在线综合 | 国产视频高清 | 婷婷777 | 国产精品久久久久久久成人午夜 | 免费在线观看毛片 | 久久夜色精品国产噜噜av小说 | 亚洲欧美日韩中文在线 | 97精品久久 | av一区二区三区在线观看 | 亚洲精品456在线播放 | 男人天堂亚洲天堂 | 国产一级二级毛片 | 国产日韩欧美在线播放 | 中文字幕日韩免费 | 污污视频免费网站 | 亚洲三级a| 天天爱综合网 | 欧美xxxx网站| 日日操av| 欧美性色网 | www.av777| 久久免费片 | 狠狠干狠狠搞 | 天天射天天干 | 99精品热视频 | 国产一区二区视频在线播放 | 亚洲一级精品 | 婷婷丁香在线 | 国产黄色免费视频 | 亚洲第一在线视频 | 男人天堂新地址 | 最新av网站在线观看 | 国产精品久久久久久久岛一牛影视 | 91精品国产综合久久香蕉922 | 九月婷婷 | 狠狠爱视频 | 欧美视频区| 一区二区三区国产视频 | 成人动漫在线免费观看 | www五月婷婷 | www.黄色小说.com | 亚洲乱码国产乱码精品精大量 | 午夜寂寞福利 | 91高清在线 | 波多野结衣一区二区三区在线 | 国产美女永久免费无遮挡 | 粉嫩绯色av一区二区在线观看 | 亚洲综合自拍网 | 99热3| 毛片视频播放 | 浪浪视频污 | 日本高清黄色 | 99久久综合国产精品二区 | 校园春色亚洲激情 | av网站在线免费看 | 六月激情综合 | 欧美乱子伦 | 国产精品99久久久久久小说 | 激情宗合网 | 久久精品视频一区 | 久久露脸国产精品 | 亚洲狼人干 | 久久午夜免费视频 | 91精品国产综合久久久久久 | 波多野结衣啪啪 | 色综合社区 | 97香蕉视频| 成人国产一区 | 国产传媒在线 | 久久久国产精品视频 | 久久精品亚洲一区二区 | 国产www性| 超碰人人射 | 国产做爰高潮呻吟视频 | 国产丝袜在线播放 | 三级影片在线播放 | 久久肉 | 欧美xxxxbbbb | 国产剧情久久 | 中国第一毛片 | 中文在线国产 | 一区二区久久久 | 日韩成人免费在线视频 | 99久久99热这里只有精品 | 草1024榴社区成人 | 成人av影院 | 夜夜嗨av 禁果av 粉嫩av懂色av | 128tv在线观看免费 | 欧美日韩中文视频 | 亚洲男人天堂2023 | 91精品久久久久久久99蜜桃 | 国产一区日韩 | 97久久精品人人澡人人爽 | 国产三级视频在线 | 激情六月综合 | 久久久啊啊啊 | 黄色一级大片免费版 | 亚洲综合精品视频 | 天堂中文在线看 | 国产乱码久久久 | 国产精品久久久久久人 | 久久天堂av | 国产让女高潮的av毛片 | 色吧综合网| 成人免费高清 | 久久久精品中文字幕 | 国产伊人久久 | 日韩三级在线免费观看 | 午夜视频1000| 欧美视频免费在线 | 免费国产高清 | 天天摸天天射 | 少妇高潮一区二区三区99小说 | 欧美影院在线观看 | 高h np 黄暴 粗口文 | 天天色综合色 | 1区2区视频| 亚洲最大色大成人av | 亚洲欧美一区二区三区在线 | 黄a在线 | 精品国产网站 | 精品久久久久久久久久久久久 | 自拍偷拍第1页 | 国产精品综合久久久久久 | 天天看夜夜操 | 玖玖视频网 | 91在线视频国产 | 中文字幕99 | av网站网址 | 爱情岛论坛自拍亚洲品质极速最新章 | 久久久久久久久久影院 | 欧美大片黄 | 精品动漫一区二区三区的观看方式 | 日本视频黄色 | 国产成人毛片 | 亚洲自拍另类 | 国产精品另类 | 国产三级不卡 | 樱花视频在线免费观看 | 婷婷视频 | 亚洲精品久久久久久国产精华液 | 国产精品av网站 | 中文天堂在线中文 | 日韩一级在线视频 | 做爰无遮挡三级 | 97午夜 | 高清av一区 | 黄色污污视频软件 | www.成人在线 | 日韩videos | 99精品欧美一区二区三区 | 99热这里只 | 伊人影院在线播放 | 五月伊人婷婷 | 中文字幕一区二区在线视频 | 毛片视频在线免费观看 | 国产在线资源 | www.四虎.| 狠狠爱夜夜 | 久久尤物免费一区二区三区 | 777理伦三级做爰 | 伊人久久国产精品 | 奇米久久久| 蜜桃成人在线视频 | 91免费影片 | 久久依人网 | 综合久久色 | 欧美日韩在线视频一区 | 久久久久久99| 日本视频免费观看 | 黄色a一级 | 国产在线观看h | 中文字幕免费在线观看 | 欧美精品自拍偷拍 | 亚洲男人天堂2023 | 国产色站 | 图片区小说区视频区 | 亚洲精品1区 | 国产精品一区二区免费 | 欧美日韩一区二区三区 | 黄色免费视频观看 | 伊人资源网 | 成人欧美一区二区三区黑人冫 | 国产原创在线播放 | 日日干日日 | 国产suv精品一区二区69 | 国产成人精品777777 | 亚洲免费黄色片 | 国产精品99久久久久久www | 国产山村乱淫老妇av | 久色伊人 | 久草手机在线 | 黄色大片免费观看 | 国产欧美视频在线播放 | 久久精品视频一区二区 | 亚洲日本视频 | 4438激情网| 蜜桃av噜噜一区二区三区小说 | 欧美性猛交xxxx | 在线免费小视频 | 牛牛精品视频 | 久久午夜鲁丝片午夜精品 | av片亚洲 | 不卡视频一区二区三区 | 福利一区在线 | 色婷久久 | 欧美视频在线观看一区二区 | 黄色小视频免费在线观看 | 综合精品一区 | 日本黄色片免费看 | 久久久久久久综合 | 久久精品国产视频 | 天天色天天看 | 久久精品免费看 | 亚洲影视一区二区三区 | 午夜视频一区二区 | 日韩一级影片 | 欧美成人黄色网 | 精品产国自在拍 | av片亚洲 | 国产乡下妇女做爰毛片 | 51国产偷自视频区免费播放 | 视频一区日韩 | www.夜色 | 亚洲在线精品 | 依依综合网 | 久久久久久综合 | 欧美国产大片 | 中文成人字幕 | 国产拍拍拍 | 天天干天天草天天射 | 亚洲欧洲精品成人久久曰影片 | 青娱乐欧美 | 天天色影 | 国产自产一区二区 | 99精品一区二区 | 日本在线免费看 | 97色婷婷| 成人网战| 亚洲精品久久久蜜桃动漫 | 夜夜操狠狠干 | 黄频在线播放 | 在线精品国产 | 国产精品福利在线播放 | 国产交换配乱淫视频免费 | 狠狠干影院 | 欧美久久一区二区 | 97在线公开视频 | 欧美大色网 | 天堂在线视频观看 | 欧美www.| 天天弄天天操 | 亚洲黄色自拍视频 | 日韩av在线播放观看 | 欧美日韩一区精品 | 九九视频免费 | 青青草成人网 | 第一页国产 | 久久精品不卡 | 亚洲国产网 | heyzo久久| 国产91精品久久久久久久 | 欧美内谢| 日韩网站在线观看 | 欧美精品免费在线观看 | 黄色中文 | 91丨九色丨丰满人妖 | 日韩精品视频在线 | 超碰伊人网 | av网址导航大全 | 伊人9| 天天操天天操 | 国产一级黄色大片 | 国产性猛交╳xxx乱大交 | 国产16处破外女视频在线 | 午夜亚洲一区 | 欧美福利视频在线观看 | www.av在线 | 国内精品久久久久久久影视麻生 | 91香蕉视频在线看 | 亚洲欧美成人 | 欧美在线黄色 | a天堂中文在线观看 | 国产精品免费观看视频 | 欧美视频一区在线观看 | 成人美女视频在线观看 | 成人在线观看一区 | 色在线免费视频 | 久久露脸国产精品 | 久久精品日韩 | www.日日| 国产高清不卡一区 | 一级黄色a毛片 | 韩国av在线| 精品初高中害羞小 | 国产精品成人国产乱一区 | 99热这里只有精品在线 | 精品少妇一区二区三区视频免付费 | 久久中文网 | 国产a级片 | 爆操91 | 在线观看xxxx | 精品在线99 | 黄色成人av在线 | 免费看日韩av | 日韩免费在线观看视频 | 久久久久久久久久久久久大色天下 | 久久久久久久影视 | 精品国产99久久久久久宅男i | 在线免费色视频 | 久久久久久久久亚洲 | 亚洲精品视频在线播放 | 日韩在线视频不卡 | 亚洲巨乳av | 欧美伊人网 | 91麻豆产精品久久久久久 | 成人美女免费网站视频 | 国产亚洲欧美在线精品 | 天天摸天天做 | 青青青免费在线视频 | 色综合图片区 | 我想看毛片 | 亚洲精品视 | 亚洲福利影院 | 超碰在线日韩 | 亚洲欧美成人一区二区三区 | 欧美人妖另类 | 亚洲日本一区二区三区 | 黑人中文字幕一区二区三区 | 伊人影院中文字幕 | 日韩a级片| 亚洲特黄 | jav中文字幕 | 久久久久成人精品免费播放动漫 | 亚洲欧美强伦一区二区 | 国产一区二区三区视频在线播放 | 91精品一区二区三区在线观看 | 91av免费在线观看 | 成人在线观看黄色 | 国产成人啪精品午夜在线观看 | 午夜手机福利 | 麻豆伊甸园 | www色中色| 91精品亚洲 | fc2成人免费视频 | 国产精品久久久久久妇女 | 超碰蜜桃| 日日操夜夜摸 | 91超碰免费| 一本色综合亚洲精品蜜桃冫 | 亚洲在线色 | 久久手机免费视频 | 亚洲一区欧美日韩 | 欧美黄色a| www.xxx日韩 | 国产免费拔擦拔擦8x在线播放 | av不卡网 | 一本色道久久综合亚洲精品按摩 | 久草香蕉在线视频 | av网站网址 | 蜜臀av性久久久久蜜臀aⅴ流畅 | 六月综合 | 日韩aⅴ片 | 国产精品久久久久久久久久久久久久久久久 | 午夜婷婷丁香 | 欧美亚洲第一区 | 日本成人免费在线视频 | 精品少妇一区二区三区免费观看 | 黄色aaaaa| 天天色婷婷| 免费毛片大全 | 成人午夜影院在线观看 | 亚洲国产精品成人综合久久久久久久 | 夜夜偷影视| 日本羞羞网站 | 日韩美女一区二区三区 | 91视频黄版 | 最新色网址 | 伊人久久久久久久久久久久 | 一本色道久久88综合日韩精品 | 亚洲爽爽爽| 亚洲天堂一区二区 | 亚洲欧美日韩偷拍 | 亚洲综合久| 亚洲sssss色在线观看 | 亚洲大尺度网站 | 久久丁香 | 国产乱仑| 婷婷久久伊人 | 国产三级一区二区三区 | 嫩草网站在线观看 | 天天操天天插 | 成年人免费观看网站 | 一本到久久 | 日韩欧美视频一区二区三区 | а√在线中文网新版地址在线 | 黄色a级片网站 | 国产传媒毛片精品视频第一次 | 天天摸天天做 | 日韩最新av | 日韩精品www | 黄视频在线观看免费 | 亚洲综合中文字幕在线 | 欧美黄频 | 一级做a爱片久久毛片 | 日本三级视频在线观看 | 91在线网址 | 夜久久久| 在线播放一级片 | 国产精品成人av性教育 | 日韩欧美国产另类 | 欧美日韩一级二级三级 | 成人在线视频一区 | 欧美一级啪啪 | 国产精品8 | 嫩草国产精品 | 成年人黄色片网站 | 少妇捆绑紧缚av | 亚洲不卡一区二区三区 | 四虎影库永久在线 | 亚洲 欧美 日韩 偷拍 | 国产绿帽刺激高潮对白 | 成人av片在线观看 | 95精品视频 | 国产精品国产精品国产专区不片 | 亚洲成人一区二区 | 免费国产高清 | 亚洲第三区 | 小猪视频黄色 | 日本少妇三级 | 中国在线观看视频高清免费 | 亚洲精品免费视频 | 久久99久久99精品蜜柚传媒 | 狠狠爱av| a毛片基地 | 日本欧美黄色 | 亚洲一区 视频 | 国产午夜视频在线观看 | 国产亚洲资源 | 欧洲av一区 | 波多野吉衣一区 | 91精品一区二区三区在线观看 | 欧美激情一区二区三区p站 自拍av在线 | 免费观看日韩av | 欧美成人毛片 | 欧美日b视频 | 亚洲乱码中文字幕 | 找av导航入口| 欧美日韩资源 | 先锋影音久久 | 亚洲国产精品美女 | 一本一本久久a久久精品综合麻豆 |