狠狠综合久久久久综合网址-a毛片网站-欧美啊v在线观看-中文字幕久久熟女人妻av免费-无码av一区二区三区不卡-亚洲综合av色婷婷五月蜜臀-夜夜操天天摸-a级在线免费观看-三上悠亚91-国产丰满乱子伦无码专区-视频一区中文字幕-黑人大战欲求不满人妻-精品亚洲国产成人蜜臀av-男人你懂得-97超碰人人爽-五月丁香六月综合缴情在线

代寫COMP34212、代做Python/c++程序設計

時間:2024-04-29  來源:  作者: 我要糾錯



COMP34212 Cognitive Robotics Angelo Cangelosi
COMP34212: Coursework on Deep Learning and Robotics
34212-Lab-S-Report
Submission deadline: 18 April 2024, 18:00 (BlackBoard)
Aim and Deliverable
The aim of this coursework is (i) to analyse the role of the deep learning approach within the
context of the state of the art in robotics, and (ii) to develop skills on the design, execution and
evaluation of deep neural networks experiments for a vision recognition task. The assignment will
in particular address the learning outcome LO1 on the analysis of the methods and software
technologies for robotics, and LO3 on applying different machine learning methods for intelligent
behaviour.
The first task is to do a brief literature review of deep learning models in robotics. You can give a
summary discussion of various applications of DNN to different robotics domains/applications.
Alternatively, you can focus on one robotic application, and discuss the different DNN models used
for this application. In either case, the report should show a good understanding of the key works in
the topic chosen.
The second task is to extend the deep learning laboratory exercises (e.g. Multi-Layer Perceptron
(MLP) and/or Convolutional Neural Network (CNN) exercises for image datasets) and carry out and
analyse new training simulations. This will allow you to evaluate the role of different
hyperparameter values and explain and interpret the general pattern of results to optimise the
training for robotics (vision) applications. You should also contextualise your work within the state
of the art, with a discussion of the role of deep learning and its pros and cons for robotics research
and applications.
You can use the standard object recognition datasets (e.g. CIFAR, COCO) or robotics vision datasets
(e.g. iCub World1, RGB-D Object Dataset2). You are also allowed to use other deep learning models
beyond those presented in the lab.
The deliverable to submit is a report (max 5 pages including figures/tables and references) to
describe and discuss the training simulations done and their context within robotics research and
applications. The report must also include on online link to the Code/Notebook within the report,
or ad the code as appendix (the Code Appendix is in addition to the 5 pages of the core report). Do
not use AI/LLM models to generate your report. Demonstrate a credible analysis and discussion of
1 https://robotology.github.io/iCubWorld/
2 https://rgbd-dataset.cs.washington.edu/index.html
COMP34212 Cognitive Robotics Angelo Cangelosi
your own simulation setup and results, not of generic CNN simulations. And demonstrate a
credible, personalised analysis of the literature backed by cited references.
Marking Criteria (out of 30)
1. Contextualisation and state of the art in robotics and deep learning, with proper use of
citations backing your academic brief review and statements (marks given for
clarity/completeness of the overview of the state of the art, with spectrum of deep learning
methods considered in robotics; credible personalised critical analysis of the deep learning
role in robotics; quality and use of the references cited) [10]
2. A clear introductory to the DNN classification problem and the methodology used, with
explanation and justification of the dataset, the network topology and the hyperparameters
chosen; Add Link to the code/notebook you used or add the code in appendix. [3]
3. Complexity of the network(s), hyperparameters and dataset (marks given for complexity
and appropriateness of the network topology; hyperparameter exploration approach; data
processing and coding requirements) [4]
4. Description, interpretation, and assessment of the results on the hyperparameter testing
simulations; include appropriate figures and tables to support the results; depth of the
interpretation and assessment of the quality of the results (the text must clearly and
credibly explain the data in the charts/tables); Discussion of alternative/future simulations
to complement the results obtained) [13]
5. 10% Marks lost if report longer than the required maximum of 5 pages: 10% Marks lost if
code/notebook (link to external repository or as appendix) is not included.
Due Date: 18 April 2024, h18.00, pdf on Blackboard. Use standard file name: 34212-Lab-S-Report

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp















 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:ENGI 1331代做、代寫R程序語言
  • 下一篇:代做FINM7008、代寫FINM7008 Applied Investments
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區(qū)
    昆明西山國家級風景名勝區(qū)
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗證碼平臺 幣安官網(wǎng)下載 歐冠直播 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權所有
    ICP備06013414號-3 公安備 42010502001045

    狠狠综合久久久久综合网址-a毛片网站-欧美啊v在线观看-中文字幕久久熟女人妻av免费-无码av一区二区三区不卡-亚洲综合av色婷婷五月蜜臀-夜夜操天天摸-a级在线免费观看-三上悠亚91-国产丰满乱子伦无码专区-视频一区中文字幕-黑人大战欲求不满人妻-精品亚洲国产成人蜜臀av-男人你懂得-97超碰人人爽-五月丁香六月综合缴情在线
  • <dl id="akume"></dl>
  • <noscript id="akume"><object id="akume"></object></noscript>
  • <nav id="akume"><dl id="akume"></dl></nav>
  • <rt id="akume"></rt>
    <dl id="akume"><acronym id="akume"></acronym></dl><dl id="akume"><xmp id="akume"></xmp></dl>
    在线观看av日韩| 亚洲欧美日韩综合网| 亚洲日本黄色片| 男女啪啪的视频| 免费视频爱爱太爽了| 色欲色香天天天综合网www| 日韩少妇内射免费播放| 亚洲第一狼人区| 亚洲国产一二三精品无码| 国产精品333| 久热精品在线观看视频| 天天爱天天操天天干| 色诱视频在线观看| 视频一区二区视频| 一二三四中文字幕| 真人抽搐一进一出视频| 孩娇小videos精品| 亚洲精品手机在线观看| 婷婷中文字幕在线观看| 异国色恋浪漫潭| www午夜视频| 欧美h视频在线观看| 永久免费网站视频在线观看| 无码内射中文字幕岛国片| 日本精品www| 亚洲国产成人va在线观看麻豆| 午夜精品久久久久久久99热影院| 大西瓜av在线| 无遮挡又爽又刺激的视频| 牛夜精品久久久久久久| 91 视频免费观看| 成人在线国产视频| 牛夜精品久久久久久久| 99久re热视频精品98| 老太脱裤子让老头玩xxxxx| 日韩一级片播放| 国产精品av免费观看| 成年人在线看片| 国产亚洲精品久久久久久久| 免费男同深夜夜行网站| 国产精品无码电影在线观看| 色偷偷中文字幕| 国产精品久久久久久久99| 国产日韩亚洲欧美在线| 99re精彩视频| 日本韩国欧美在线观看| 黄瓜视频免费观看在线观看www | 亚洲天堂网一区| 91午夜在线观看| 一级黄色在线播放| 欧美 日韩 国产一区| 91精品国产毛片武则天| 911福利视频| 日本女优爱爱视频| 日本a视频在线观看| 免费看污污视频| 久久久精品视频国产| 99热手机在线| 自拍偷拍21p| 三级4级全黄60分钟| 日韩国产一级片| 国产精品一二三在线观看| 国产九九热视频| 欧美成人福利在线观看| 色婷婷综合久久久久中文字幕| 久久在线中文字幕| 成人av在线播放观看| 男人天堂网站在线| av动漫在线免费观看| 97精品国产97久久久久久粉红| 亚洲一区二区在线视频观看| 88av.com| www.超碰97.com| 色噜噜狠狠一区二区三区狼国成人| 嫩草av久久伊人妇女超级a| 男人靠女人免费视频网站| 国产毛片视频网站| 欧美在线观看成人| av免费在线播放网站| 91视频免费版污| 亚洲精品视频导航| 亚洲精品在线视频播放| 性欧美18一19内谢| 国产曰肥老太婆无遮挡| 日韩免费视频播放| 亚州精品一二三区| 99精品一区二区三区的区别| 国产亚洲精品久久久久久久| av免费观看大全| 成人免费xxxxx在线视频| 国产一级片自拍| 久久综合亚洲精品| 女性女同性aⅴ免费观女性恋 | 99视频在线免费播放| 日韩欧美视频网站| 欧美成年人视频在线观看| 8x8x华人在线| 黑森林福利视频导航| 国产不卡的av| 欧美 日韩 激情| 看看黄色一级片| ww国产内射精品后入国产| 欧美一级黄色影院| 粉嫩av一区二区三区天美传媒 | 北条麻妃av高潮尖叫在线观看| 国产美女视频免费看| aa在线观看视频| 日本高清免费观看| 成年人免费在线播放| 成人在线观看www| 国产成人手机视频| 国产九九九九九| 四虎免费在线观看视频| 日韩欧美国产片| 欧美成人黑人猛交| 人妻夜夜添夜夜无码av| www.午夜av| www.激情小说.com| 18禁男女爽爽爽午夜网站免费| 国产精品波多野结衣| 国产福利在线免费| 日韩一级免费在线观看| 国产欧美日韩网站| 黄色成人在线免费观看| www.午夜av| 天天av天天操| theporn国产精品| 污污网站在线观看视频| 污污视频网站免费观看| 日本成年人网址| 日韩在线综合网| 日本a在线免费观看| 嫩草影院中文字幕| a天堂资源在线观看| 无码人妻aⅴ一区二区三区日本| 亚洲一区日韩精品| 激情五月俺来也| 亚洲一区精品视频在线观看| av网站在线不卡| 久久99爱视频| 亚洲一区二区偷拍| 天天干天天曰天天操| 亚洲啊啊啊啊啊| 日韩a∨精品日韩在线观看| 成人性生活视频免费看| 5月婷婷6月丁香| 一道本视频在线观看| 一级黄色片国产| 黄色一级片av| 国产午夜福利在线播放| 免费无码国产v片在线观看| 久久久久免费精品| 国产三级精品三级在线| 激情六月天婷婷| 波多野结衣之无限发射| caoporn超碰97| 午夜探花在线观看| 日韩在线视频在线观看| 天堂中文视频在线| 中文字幕色呦呦| 国内自拍视频一区| 日本美女爱爱视频| 成人精品视频一区二区| 国产精品久久久久久9999| 欧美在线观看黄| 一道本视频在线观看| 色呦呦网站入口| 99久久国产宗和精品1上映| 在线播放免费视频| 日韩黄色片视频| 一二三在线视频| 日本在线观看免费视频| 国产www免费| 中文字幕剧情在线观看| 逼特逼视频在线| 中国一级大黄大黄大色毛片| 少妇性l交大片| 免费国产黄色网址| 日本一二三区在线| 亚洲精品乱码久久久久久自慰| 中国一级大黄大黄大色毛片| 少妇人妻互换不带套| 人人妻人人澡人人爽欧美一区| 国产v亚洲v天堂无码久久久| 日韩av中文字幕第一页| 免费成人黄色大片| www.日本一区| 成年人网站大全| 男人揉女人奶房视频60分| 欧美人与动牲交xxxxbbbb| 午夜啪啪小视频| 日韩va在线观看| 亚洲精品视频导航| 欧洲av无码放荡人妇网站| 国产免费裸体视频| 四虎影院一区二区| 青青草原播放器| 亚洲欧美一区二区三区不卡| 中文字幕 欧美日韩| 国产欧美激情视频|