狠狠综合久久久久综合网址-a毛片网站-欧美啊v在线观看-中文字幕久久熟女人妻av免费-无码av一区二区三区不卡-亚洲综合av色婷婷五月蜜臀-夜夜操天天摸-a级在线免费观看-三上悠亚91-国产丰满乱子伦无码专区-视频一区中文字幕-黑人大战欲求不满人妻-精品亚洲国产成人蜜臀av-男人你懂得-97超碰人人爽-五月丁香六月综合缴情在线

代寫DTS101TC Introduction to Neural Networks Coursework

時間:2024-03-01  來源:  作者: 我要糾錯


Due: Sunday Apr.21th, 2024 @ 17:00

Weight: 100%

Overview

This coursework is the sole assessment for DTS101TC and aims to evaluate your compre-hension of the module. It consists of three sections: 'Short Answer Question', 'Image Classification Programming', and 'Real-world Application Question'. Each question must be answered as per the instructions provided in the assignment paper. The programming task necessitates the use of Python with PyTorch within a Jupyter Notebook environment, with all output cells saved alongside the code.

Learning Outcomes

A.   Develop an understanding of neural networks  –  their architectures, applications  and limitations.

B.   Demonstrate the ability to implement neural networks with a programming language

C.   Demonstrate the  ability to provide critical analysis on real-world problems and design suitable solutions based on neural networks.

Policy

Please save your assignment in a PDF document, and package your code as a ZIP file. If there are any errors in the program, include debugging information. Submit both the answer sheet and the ZIP code file via Learning Mall Core to the appropriate drop box. Electronic submission is the only method accepted; no hard copies will be accepted.

You must download your file and check that it is viewable after submission. Documents may become  corrupted  during  the  uploading  process  (e.g.  due  to  slow  internet  connections). However, students themselves are responsible for submitting a functional and correct file for assessments.

Avoid Plagiarism

.     Do NOT submit work from others.

.     Do NOT share code/work with others.

.     Do NOT copy and paste directly from sources without proper attribution.

.     Do NOT use paid services to complete assignments for you.

Q1. Short Answer Questions [40 marks]

The questions test general knowledge and understanding of central concepts in the course. The answers should be short. Any calculations need to be presented.

1.  (a.)  Explain the concept of linear separability. [2 marks]

(b.)  Consider the following data points from two categories: [3 marks]

X1  : (1, 1)    (2, 2)    (2, 0);

X2  : (0, 0)    (1, 0)    (0, 1).

Are they linearly separable? Make a sketch and explain your answer.

2.  Derive the gradient descent update rule for a target function represented as

od  = w0 + w1 x1 + ... + wnxn

Define the squared error function first, considering a provided set of training examples D, where each training example d ∈ D is associated with the target output td. [5 marks]

3.  (a.)  Draw a carefully labeled diagram of a 3-layer perceptron with 2 input nodes, 3 hidden nodes, 1 output node and bias nodes. [5 marks]

(b.)  Assuming that the activation functions are simple threshold, f(y) = sign(y), write down the input- output functional form of the overall network in terms of the input-to-hidden weights, wab , and the hidden-to-output weights, ˜(w)bc. [5 marks]

(c.)  How many distinct weights need to be trained in this network? [2 marks]

(d.)  Show that it is not possible to train this network with backpropagation. Explain what modification is necessary to allow backpropagation to work. [3 marks]

(e.)  After you modified the activation function, using the chain rule, calculate expressions for the fol- lowing derivatives

(i.) ∂J/∂y / (ii.) ∂J/∂˜(w)bc

where J is the squared error, and t is the target. [5 marks]

4.  (a.)  Sketch a simple recurrent network, with input x, output y, and recurrent state h. Give the update equations for a simple RNN unit in terms of x, y, and h. Assume it usestanh activation. [5 marks]

(b.)  Name one example that can be more naturally modeled with RNNs than with feedforward neural networks?  For a dataset X := (xt ,yt )1(k), show how information is propagated by drawing a feed-

forward neural network that corresponds to the RNN from the figure you sketch for k = 3.  Recall that a feedforward neural network does not contain nodes with a persistent state. [5 marks]

Q2. Image Classification Programming [40 marks]

For this  question,  you  will  build your  own image  dataset  and  implement a neural network  by Pytorch.   The question is split in a number of steps.  Every  step  gives you some marks.  Answer the  questions for  each step and include the screenshot of code  outputs  in your answer sheet.

- Language and Platform Python  (version  3.5  or  above)  with  Pytorch  (newest  version). You  may  use any libraries available on Python platform, such as numpy, scipy, matplotlib, etc.  You need to run the code in the jupyter notebook.

- Code Submission All of your dataset,  code  (Python files and ipynb files) should be  a package in a single ZIP file,  with  a PDF of your IPython  notebook with  output cells. INCLUDE your dataset in the zip file.

1. Dataset Build [10 marks]

Create an image dataset for classification with 120 images ( ‘.jpg’  format), featuring at least two cate- gories. Resize or crop the images to a uniform size of 128 × 128 pixels.  briefly describe the dataset you constructed.

2. Data Loading [10 marks]

Load your dataset, randomly split the set into training set (80 images), validation set (20 images) and test set (20 images).

For the training set, use python commands to display the number of data entries, the number of classes, the number of data entries for each classes, the shape of the image size.  Randomly plot 10 images in the training set with their corresponding labels.

3. Convolutional Network Model Build [5 marks]

//  pytorch .network

class  Network(nn.Module):

def  __init__ (self,  num_classes=?):

super(Network,  self).__init__ ()

self.conv1  =  nn.Conv2d(in_channels=3,  out_channels=5,  kernel_size=3,  padding=1) self.pool  =  nn.MaxPool2d(2,  2)

self.conv2  =  nn.Conv2d(in_channels=5,  out_channels=10,  kernel_size=3,  padding=1) self.fc1  =  nn.Linear(10  *  5  *  5,  100)

self.fc2  =  nn.Linear(100,  num_classes)

def  forward(self,  x):

x  =  self.pool(F.relu(self.conv1(x)))

x  =  self.pool(F.relu(self.conv2(x)))

x  =  x.view(-1,  10  *  5  *  5)

x  =  self.fc1(x)

x  =  self.fc2(x)

return  x

Implement Network, and complete the form below according to the provided Network. Utilize the symbol ‘-’ to represent sections that do not require completion. What is the difference between this model and AlexNet?

Layer

# Filters

Kernel Size

Stride

Padding

Size of

Feature Map

Activation Function

Input

Conv1


ReLU

MaxPool

Conv2


ReLU

FC1


-

-

-


ReLU

FC2


-

-

-

4. Training [10 marks]

Train the above Network at least 50 epochs. Explain what the lost function is, which optimizer do you use, and other training parameters, e.g., learning rate, epoch number etc.  Plot the training history, e.g., produce two graphs (one for training and validation losses, one for training and validation accuracy) that each contains 2 curves. Have the model converged?

5. Test [5 marks]

Test the trained model on the test set.  Show the accuracy and confusion matrix using python commands.

Q3. Real-world Application Questions [20 marks]

Give ONE specific  real-world problem  that  can  be  solved  by  neural networks.   Answer  the  questions  below (answer to  each  question should not  exceed 200 words) .

1.  Detail the issues raised by this real-world problem, and explain how neural networks maybe used to address these issues. [5 marks]

2.  Choose an established neural network to tackle the problem.  Specify the chosen network and indicate the paper in which this model was published. Why you choose it? Explain. [5 marks]

3.  How to collect your training data?  Do you need labeled data to train the network?  If your answer is yes, 請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代做代寫COMPSCI 4091 Advanced Networked Systems
  • 下一篇:CSCI 2033代做、代寫Python, C++/Java編程
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗證碼平臺 幣安官網下載 歐冠直播 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    狠狠综合久久久久综合网址-a毛片网站-欧美啊v在线观看-中文字幕久久熟女人妻av免费-无码av一区二区三区不卡-亚洲综合av色婷婷五月蜜臀-夜夜操天天摸-a级在线免费观看-三上悠亚91-国产丰满乱子伦无码专区-视频一区中文字幕-黑人大战欲求不满人妻-精品亚洲国产成人蜜臀av-男人你懂得-97超碰人人爽-五月丁香六月综合缴情在线
  • <dl id="akume"></dl>
  • <noscript id="akume"><object id="akume"></object></noscript>
  • <nav id="akume"><dl id="akume"></dl></nav>
  • <rt id="akume"></rt>
    <dl id="akume"><acronym id="akume"></acronym></dl><dl id="akume"><xmp id="akume"></xmp></dl>
    97xxxxx| 91香蕉视频网址| 欧洲金发美女大战黑人| 亚洲人辣妹窥探嘘嘘| 国产视频一视频二| 成人免费视频91| 免费看欧美一级片| 日本免费a视频| aa视频在线播放| 日韩网址在线观看| 搡女人真爽免费午夜网站| 欧美日韩亚洲第一| 一本色道无码道dvd在线观看| 日韩亚洲欧美视频| 97国产精东麻豆人妻电影 | 免费裸体美女网站| 精品一区二区中文字幕| 91激情视频在线| 成年人网站av| 国产日本在线播放| 青青草原成人网| 久久久久国产一区| 欧美性视频在线播放| 人人妻人人澡人人爽欧美一区| 久久亚洲国产成人精品无码区| 成人免费视频91| 黄色国产精品视频| 亚洲av毛片在线观看| 欧美在线一区视频| 国产又黄又猛又粗又爽的视频| 奇米影视四色在线| 色乱码一区二区三区熟女| 大荫蒂性生交片| 日本熟妇人妻中出| 欧洲金发美女大战黑人| 欧美污视频网站| 成人性做爰片免费视频| 欧美女人性生活视频| 日本高清xxxx| 91极品视频在线观看| 日本精品福利视频| 国产 porn| 日本十八禁视频无遮挡| 天天干天天玩天天操| 国产九九九九九| 天天操天天干天天做| 浮妇高潮喷白浆视频| 日本高清免费在线视频| 91成人在线观看喷潮教学| 国内av一区二区| 国产l精品国产亚洲区久久| 午夜探花在线观看| 激情五月婷婷基地| 久久综合久久色| 亚洲 欧美 日韩 国产综合 在线| 国内av免费观看| 亚洲免费999| 高清一区二区视频| 日本一区二区黄色| 欧美爱爱视频免费看| 精品一区二区三区毛片| 中文字幕55页| 在线视频日韩欧美| www.久久91| 污污动漫在线观看| 天堂网在线免费观看| 国产又粗又长又大的视频| 欧美成人免费高清视频| 国产成人无码一二三区视频| 男人的天堂狠狠干| 亚洲自偷自拍熟女另类| 久久久久久久午夜| 亚洲乱码中文字幕久久孕妇黑人| 国产精品国产亚洲精品看不卡| 久久综合亚洲精品| 青青青青在线视频| 中国丰满人妻videoshd| 国产精品自拍片| 国产极品美女高潮无套久久久| aⅴ在线免费观看| 欧美精品无码一区二区三区| www.超碰com| 黄色a级三级三级三级| 偷拍盗摄高潮叫床对白清晰| 黄色小视频大全| 欧美乱大交xxxxx潮喷l头像| 777久久久精品一区二区三区 | 三级在线免费观看| 久久成人福利视频| 国产精品无码专区av在线播放| 老司机午夜av| 亚洲精品免费一区亚洲精品免费精品一区| 亚洲欧美天堂在线| 大陆极品少妇内射aaaaaa| 国产人妻777人伦精品hd| 国产福利一区视频| 999热精品视频| 青青视频在线播放| www.日本久久| av免费中文字幕| 99久久久无码国产精品性色戒| 国产原创中文在线观看 | 久久99国产精品一区| 国产精品12345| 国产精品一区二区小说| a级黄色片免费| 88av.com| 日韩欧美猛交xxxxx无码| 亚洲天堂网一区| 国内精品视频一区二区三区| 亚洲综合色在线观看| 天堂…中文在线最新版在线| 91在线第一页| 超碰超碰在线观看| av网站在线观看不卡| 蜜臀av.com| 亚洲第一天堂久久| 国产免费一区二区三区视频| 丰满女人性猛交| 亚洲 欧美 另类人妖| 男女激情无遮挡| 无码熟妇人妻av在线电影| 捷克做爰xxxⅹ性视频| 日av中文字幕| 色诱视频在线观看| 成熟了的熟妇毛茸茸| 久久久久久久9| 黄色影视在线观看| 亚洲一区二区福利视频| 污网站免费在线| 9久久婷婷国产综合精品性色 | 日本黄网站免费| 国产性xxxx18免费观看视频| 欧美性潮喷xxxxx免费视频看| 在线播放黄色av| 欧美 日韩 国产 在线观看| 日韩在线一区视频| 中文字幕第三区| 一级黄色片国产| 国产偷人视频免费| 欧美女人性生活视频| 成年人免费大片| 亚洲高清在线免费观看| 搡女人真爽免费午夜网站| 中文字幕第21页| 亚洲欧美天堂在线| 中文字幕在线乱| 2019日韩中文字幕mv| 免费国产a级片| 色婷婷综合久久久久中文字幕| 欧美黄网站在线观看| 亚洲不卡视频在线| 性鲍视频在线观看| 蜜臀精品一区二区| 国产 福利 在线| 在线播放av中文字幕| 欧美 亚洲 视频| 日本www在线播放| 亚洲一级免费观看| 老司机午夜网站| 日本成年人网址| 久久婷婷中文字幕| 成人毛片100部免费看| 蜜桃传媒一区二区三区| 一级黄色录像在线观看| 成人小视频在线观看免费| 97在线播放视频| 亚洲欧美日韩网站| 国产淫片免费看| av亚洲天堂网| 国产超级av在线| 手机在线观看日韩av| 欧美日韩激情视频在线观看| 欧美一级特黄aaa| 人妻有码中文字幕| 欧美 国产 精品| 国产探花在线看| 久久美女福利视频| 成人免费观看在线| 国产福利在线免费| 国产免费黄色av| 999一区二区三区| 在线观看日本www| 人人干人人视频| 国产欧美高清在线| 国产极品尤物在线| 欧美另类videosbestsex日本| xxww在线观看| 妞干网在线免费视频| www..com日韩| www.avtt| 亚洲国产精品成人天堂| 喜爱夜蒲2在线| av电影一区二区三区| 五月天视频在线观看| 日本中文字幕影院| 欧美成人三级在线播放| 在线看的黄色网址| 在线免费观看av的网站| 免费一级特黄录像|