国产一区二区三区香蕉-2020国产成人精品视频-欧美日韩亚洲三区-www.91桃色-最美情侣中文第5季免费观看-久草毛片-国产成人精品av-男女猛烈拍拍拍无挡视频-中文字幕看片-色视频欧美一区二区三区-久久久久久久久久影院-一级a爱片久久毛片-精品久久久久久无码中文字幕一区-欧美色图网站-无码色偷偷亚洲国内自拍-国产一区在线免费观看

CSCI 2033代做、代寫Python, C++/Java編程

時間:2024-03-02  來源:  作者: 我要糾錯



CSCI 2033 sections 001 and 010: Elementary Computational Linear Algebra (2024 Spring)
Assignment 1
Due 11:59pm, February 27, 2024 on Gradescope. A 25% penalty will be applied for submissions
that are up to 24 hours late, and a 50% penalty for submissions up to 48 hours late. Any later
submission will not be graded and will get zero automatically.
Notation Scalars are small letters (e.g., a, b, λ, α, β), vectors are boldface small letters (e.g., v, w),
and matrices are boldface capital letters (e.g., A, B). Vectors by default are column vectors; they
are matrices with single columns. Row vectors are matrices with single rows.
Instruction
• This homework set totals 20 points (final grade percentage will be either 8% or 17% depending
on the other homework scores);
• We assume that you know basic concepts in a high-level programming language such as
Python, C++, Java, Matlab, Julia—this is a prerequisite for this course. But we are using Python
throughout this course, because it is the No. 1 language used in modern scientific computing
and industrial applications, especially in areas related to modern artificial intelligence, data
science, machine/deep learning, computer vision, AR/VR where most modern applications
and job positions gravitate. Please find resources to pick up Python yourself; there are tons of
options online, for example https://www.pythonlikeyoumeanit.com/index.html.
• Problems 0–2 are designed to familiarize you with NumPy1—the de-facto standard for scientific computing in Python. Problems 3–4 are about applications using NumPy functions.
• We assume that you are using the Google Colab environment (https://colab.research.
google.com/), which provides a convenient and free Jupyter notebook environment ready for
computing. Please watch this video tutorial https://youtu.be/oCngVVBSsmA or search and
watch tons of similar video tutorials to get started. If you are advanced and comfortable with
local installation and running of Jupyter Notebook or JupyterLab (https://jupyter.org/),
feel free to do so. But we will not provide support for these and you will need to resolve your
own installation and running issues.
• Please show all your work in the 4 Colab files (.ipynb) we release with this homework.
Do not modify any provided code and only write your code in regions marked "YOUR
CODE STARTS HERE". In your final submission, submit the 4 files separately for their
corresponding problems in Gradescope.
Problem 0 NumPy Tutorial
You will need to work through the Prob0_Numpy_Tutorial file to master the minimal background
necessary to proceed. We will point you to additional tutorial materials as we move on; they are
mostly linked from the clickable words and phrases that are in blue.
The problems in this homework are closely related to the textbook of this course — Linear
Algebra: Step by Step by Kuldeep Singh, 2013. In the following problems, we will simply call it the
textbook.
1
https://numpy.org/
1
Problem 1 Vector Operations (5 points)
Create 3 random vectors u, v, w ∈ R
10000 as follows:
1 import numpy as np
2 rng = np . random . default_rng (20232033) # fix a random seed . Please do not modify it
3 u = rng . random ((10000 ,1) ) # generate random vector u
4 v = rng . random ((10000 ,1) ) # generate random vector v
5 w = rng . random ((10000 ,1) ) # generate random vector w
we will use these vectors for all the following questions in Problem 1.
1.1 (1.5/5) Vector indexing and concatenation (textbook section 1.3) Please obtain the following
element or subvectors; we have provided some examples in the Prob0_Numpy_Tutorial file:
(a) The 2023rd element of vector u. NOTE: Python/NumPy indexing starts from 0 instead of 1;
(b) The 2023rd to 2033rd elements of vector v (including the 2023rd and 2033rd elements). NOTE:
Python/NumPy indexing will not include the last element in indexing. Make sure that the
size of the subvector you obtain is 11. You may want to use the built-in numpy.ndarray.shape
to help you check the size of your subvector;
(c) Make a new vector by combining the first 30 elements of v and the last 100 elements of w.
You need to use the Numpy built-in function numpy.concatenate.
Note: If want to learn more about this, you can go to this NumPy tutorial.
1.2 (1/5) Linear combinations (textbook section 1.3) Calculate the following linear combinations:
u + v + w, 2u + 3v + 3w.
1.3 (1.5/5) Inner products (textbook section 1.3) Calculate the following inner products using
the built-in function numpy.inner:
⟨u,u⟩, ⟨u − 2v, w⟩, ⟨3u, 2v + w⟩.
1.4 (1/5) Vector norms (textbook section 2.1) Calculate the following vector norms using the
NumPy built-in function numpy.linalg.norm:
∥u∥ , ∥v + 3w∥ .
Problem 2. Matrix Operations (5 points)
Reminder about our notation and convention: Scalars are small letters (e.g., a, b, λ, α, β), vectors
are boldface small letters (e.g., v, w), and matrices are boldface capital letters (e.g., A, B). Vectors
by default are column vectors; they are matrices with single columns. Row vectors are matrices
with single rows.
2
We start by generating a few random matrices and vectors:
1 import numpy as np
2 rng = np . random . default_rng (20232033) # fix a random seed . Please do not modify it
3 A = rng . random ((100 ,100) ) # generate random matrix A
4 B = rng . random ((100 ,200) ) # generate random matrix B
5 C = rng . random ((100 ,200) ) # generate random matrix C
6 D = rng . random ((100 ,100) ) # generate random matrix D
7 u = rng . random ((100 ,1) ) # generate random vector u
8 v = rng . random ((200 ,1) ) # generate random vector v
We will use these matrices and vectors for all the following questions in Problem 2. We also
provided some examples in Prob0_Numpy_Tutorial file.
2.1 (0.5/5) Matrix norms (textbook section 2.1 & section 1.6) The magnitude of a matrix can be
measured similarly to that of vectors. For any matrix M ∈ R
m×n
, its (Frobenius) norm is defined as
∥M∥F =
q
⟨M,M⟩, (1)
where F is for Frobenius (a famous German mathematician). Call the NumPy built-in function
numpy.linalg.norm, and calculate the following
(a) ∥A∥F
,
(b) ∥B − C∥F
. This is the distance between B and C.
2.2 (0.5/5) Matrix indexing (Discussion Session) Please obtain these submatrices:
(a) The top-left 50-by-50 submatrix of A;
(b) The bottom-right 30-by-25 submatrix of B.
Note: If want to learn more about this, you can go to this NumPy tutorial.
2.3 (0.5/5) Matrix-vector multiplication (textbook section 1.4) Calculate the following matrixvector multiplication using the built-in function numpy.matmul (for matrix multiplication) and
numpy.transpose (for matrix transpose). NOTE: The @ operator can be used as a shorthand for
NumPy.matmul on ndarrays; M.T can be used as a shorthand for NumPy.transpose of matrix M:
Au, C
⊺u, Bv.
2.4 (0.5/5) Matrix-matrix multiplication (textbook section 1.4 & section 1.6) Calculate the
following matrix-matrix multiplication using the built-in function numpy.matmul (for matrix
multiplication) and numpy.transpose (for matrix transpose). NOTE: The @ operator can be used as
a shorthand for NumPy.matmul on ndarrays; M.T can be used as a shorthand for NumPy.transpose
of matrix M:
AB, BC⊺
, C
⊺B, uv⊺
.
3
2.5 (1.5/5) Matrix power (textbook section 1.5) For any square matrix M ∈ R
n×n
, its p-th power
is defined naturally as
Mp = |MMM{z
...M}
p times
. (2)
We have two identities for matrix power parallel to those for scalar power:
(Mp
)(Mq
) = Mp+q
, (Mp
)
q = Mpq
. (3)
Follow the following steps to numerically verify the two identities:
(a) Implement your own matrix power function mat_pow(): it should take any square matrix
M and the integer power p ≥ 0, and output the values of the matrix Mp
. NOTE: To debug,
you are encouraged to test your implementation against the Numpy built-in matrix power
function numpy.linalg.matrix_power. But, this is not required in your submission.
(b) Use your own mat_pow() function to calculate (A6
)(A8
) and A6+8, and also calculate the
relative distance (see definition below) between (A6
)(A8
) and A6+8 — the relative distance
should be very close to 0;
(c) Using your own mat_pow() function to calculate (A6
)
8 and A6∗8
, and also calculate the relative
distance between (A6
)
8 and A6∗8 — the relative distance should be very close to 0.
Definition: relative distance of matrices M and N of the same size equals ∥M−N∥F
∥M∥F
.
2.6 (1.5/5) Inverse and transpose of matrices (textbook section 1.6) Complete the following
calculations using the NumPy built-in function numpy.linalg.inv (for matrix inverse):
(a) (AD)
−1 and D−1A−1
, and the relative distance between them—the relative distance should
be very close to 0;
(b) (A−1
)
⊺ and (A⊺
)
−1
, and the relative distance between them—the relative distance should be
very close to 0;
(c) (AB)
⊺ and B⊺A⊺
, and the relative distance between them—the relative distance should be
very close to 0.
Problem 3. Gaussian Elimination and Back Substitution (5 points)
In this problem, we will implement Gaussian elimination and back substitution. In the end, we will
solve a large linear system Ax = b using our implementation. The Gaussian elimination algorithm
is largely based on Section 1.2 of the textbook; we make small necessary changes to ensure that it works
reliably on computers. Check the Colab file Prob3_Gaussian_Elimination_n_Back_Substitution
for code template.
4
3.0 (0/5) Preparation Gaussian elimination involves three types of row operations:
(a) Multiply a row by a non-zero factor. For example, multiplying λ (λ ̸= 0) on the i-row to
produce the new i-th row can be written as
1 M [[ i ] ,:] = lamb * M [[ i ] ,:]
(b) Subtract a multiple of a top row from a bottom row. For example, subtracting λ times the
i-th row from the j-th row of M, where i < j, to produce the new j-th row, can be written as
1 M [[ j ] ,:] = M [[ j ] ,:] - lamb * M [[ i ] ,:]
(c) Exchanging rows. For example, exchanging the i-th and j-th row of the matrix M can be
written as
1 M [[ i , j ] ,:] = M [[ j , i ] ,:]
3.1 (1.5/5) Gaussian elimination (Version 0) (textbook section 1.2) Implement Gaussian elimiAlgorithm 1 Gaussian Elimination Version 0
Input: A, b
1: U = concatenate(A, b) ▷ generate the augmented matrix U by concatenating A and b
2: n = number of rows in U ▷ n is the number of rows of U
3: for k = 0 : (n − 1) do ▷ k will iterate from 0 to (n − 2) (included) with increment 1
4: for j = (k + 1) : n do ▷ iteratively eliminate the rows below using the current row
5: λ = U[j, k]/U[k, k] ▷ U[k, k] is the current leading number
6: U[[j], :] = U[[j], :] − λ ∗ U[[k], :] ▷ subtract λ multiple of the k-th row from the j-th row
7: end for
8: end for
9: return U ▷ return the final augmented matrix
nation following the pseudocode in Algorithm 1. Your function should be called gauss_elim_v0
that: (i) takes an square matrix A ∈ R
n×n
, a vector b ∈ R
n
, and a print flag print_flag that
controls whether we print the intermediate augmented matrix after each row operation, and (ii)
returns a matrix U ∈ R
n×(n+1) where the left n×n submatrix of U is in the row echelon form. Hint:
Suppose that two matrices M and N have the same number of rows. To concatenate them in the
horizontal direction, we can call the built-in function numpy.concatenate:
1 P = np . concatenate (( M , N ) , axis =1)
To test your implementation, let us take a test case
 (4)
Your Gaussian elimination should produce the following sequence of intermediate augmented
matrices in the right order (Note: the elements marked red are the leading numbers that we are
currently using to eliminate non-zeros below them):



1 −1 1 1
2 −1 3 4
2 0 3 5



R1=R1−2R0
−−−−−−−−→



1 −1 1 1
0 1 1 2
2 0 3 5



R2=R2−2R0
−−−−−−−−→



1 −1 1 1
0 1 1 2
0 2 1 3



5
R2=R2−2R1
−−−−−−−−→



1 −1 1 1
0 1 1 2
0 0 −1 −1


 (5)
To get full credit, you need to print out the intermediate augmented matrix after each row
operation.
3.2 (2/5) Back substitution (textbook section 1.2) We first implement back substitution, and
then combine Gaussian elimination and back substitution into a linear system solver for cases where
A is square. Finally, we test our linear solver against the Numpy built-in.
Algorithm 2 Backward Substitution
Input: U ▷ U is the output matrix from Gaussian elimination
1: n = number of rows in U ▷ n is the number of rows of U
2: x = 0 ▷ initialize x as an all-zero vector
3: c = U[:, [−1]] ▷ c: the last column of the augmented matrix, i.e., updated b
4: D = U[:, : −1] ▷ D: the rest part of the augmented matrix, i.e., updated A
5: x[n − 1] = c[n − 1]/D[n − 1, n − 1] ▷ obtain xn−1 first
6: for i = n − 2 : −1 : −1 do ▷ i will iterate from n − 2 to 0 (included) with increment −1
7: x[i] = n
c[i] −
Pn−1
j=i+1 D[i, j]x[j]
o
/D[i, i] ▷ x[i] is the newly solved variable
8: end for
9: return x
(a) Implement back substitution following the pseudocode in Algorithm 2. Your function should
be called back_subs that: (i) takes an augmented matrix U ∈ R
n×(n+1) in the row echelon
form, and a print flag print_flag that controls whether we print the newly solved variable
value after each substitution step, and (ii) returns an x ∈ R
n as a solution to Ax = b. As a
test, take our previous final augmented matrix in Eq. (5), back substitution should give us
R2 : x2 = (−1)/(−1) = 1
R1 : x1 = (2 − 1 ∗ 1)/1 = 1 (6)
R0 : x0 = (1 − (−1) ∗ 1 − 1 ∗ 1)/1 = 1
as we move from bottom to top, row by row. To get full credit, you need to print out the
intermediate newly solved variable after each substitution step (i.e., x2, x1, and x0 in our
test).
(b) Implement a function my_solver_v0 by combining the gauss_elim_v0 and back_subs functions implemented above: this function takes a square matrix A ∈ R
n×n and a vector b ∈ R
n
,
and returns a vector x ∈ R
n
so that Ax = b. In other words, my_solver_v0 solves the linear
system Ax = b when given A and b. To test your solver, in the code template, we provide a
randomly generated A ∈ R300×300 and b ∈ R
300. Please
(i) solve the given 300 × 300 linear system using your solver—we will denote this solution
by x1;
(ii) validate your solution x1 by calculating the relative error ∥Ax1 − b∥ / ∥A∥F
, which
should be very close to 0 if your solver works well;
6
(iii) call the NumPy built-in function numpy.linalg.solve to solve the given linear system to
give a solution x2. Ideally, x1 and x2 should be the same. Please calculate the relative
distance between x1 and x2, i.e., ∥x1 − x2∥ / ∥x2∥. The relative distance should be very
close to 0 if your solver works well.
Congratulations! Now you have a simple solver for large linear systems!
3.3 (1.5/5) Gaussian elimination (Version 1) (textbook section 1.2) Gaussian elimination Version
0 works for “typical" augmented U’s, but can fail for certain U’s. Consider
U =



0 1 1 −1
2 6 4 6
1 2 3 6


 .
We cannot use the red 0 to eliminate 2 and 1 below it by row subtractions only. To make progress,
we need another row operation: row exchange. Obviously, if we exchange row 0 with row 1 or row
2, the top left element becomes non-zero and then we can make progress in elimination. Between
the 2 possibilities, we take the row with the largest element in magnitude, i.e., row 1 to be exchanged
with row 0. For subsequent elimination steps, we do similar things if we encounter elimination
difficulties due to 0’s.
The above modification sounds straightforward. However, we need another consideration when
working on actual computers: when we calculate in float precision, it is hard to tell zero from
non-zero (try 1 − 1/2023 ∗ 2023 in Python or Numpy, do you get exact 0?). This means that it
might be tricky to decide when to perform a row exchange. This also suggests an always-exchange
strategy that works the best in practice: we always exchange the current row with the row below
(including itself) with the largest element in magnitude, no matter if the current element is close
to 0 or not. Let us work through an example to understand this.

So we arrive at Gaussian elimination Version 1 described in Algorithm 3. Compared to Algorithm 1,
we only need two extra lines, marked in orange!
To implement Algorithm 3, you will need to use the following two Numpy built-in functions:
(a) numpy.absolute takes element-wise absolute value of a given vector or matrix: vector (matrix)
in, vector (matrix) out
1 u = np . array ([[1] ,[ -1] ,[2] ,[ -2]])
2 v = np .abs( u ) # short hand version for np. absolute (u)
3 # v now is [[1] ,[1] ,[2] ,[2]]
7
Algorithm 3 Gaussian Elimination Version 1
Input: A, b
1: U = concatenate(A, b) ▷ generate the augmented matrix U by concatenating A and b
2: n = number of rows in U ▷ n is the number of rows of U
3: for k = 0 : (n − 1) do ▷ k will iterate from 0 to (n − 2) (included) with increment 1
4: Find the first i so that abs{U[i, k]} is largest among abs{U[k, k]}, abs{U[k + 1, k]}, · · ·
5: ▷ here abs{} means absolute value
6: U[[k], :] ↔ U[[i], :] ▷ exchange the two rows to get the largest number (in abs{}) on top
7: for j = (k + 1) : n do ▷ iteratively eliminate the rows below using the current row
8: λ = U[j, k]/U[k, k] ▷ U[k, k] is the current leading number
9: U[[j], :] = U[[j], :] − λ ∗ U[[k], :] ▷ subtract λ multiple of the k-th row from the j-th row
10: end for
11: end for
12: return U ▷ return the final augmented matrix
(b) numpy.argmax returns the index (not value) of the maximum value of an input vector (when
ties occur, it returns the first one)
1 u = np . array ([[1] ,[ -1] ,[2] ,[ -2]])
2 idx = np . argmax ( u )
3 # idx is 2
Now we are ready to go!
(a) Implement Algorithm 3. Your function should be called gauss_elim_v1 that: (i) takes an
square matrix A ∈ R
n×n
, a vector b ∈ R
n
, and a print flag print_flag that controls whether
we print the intermediate augmented matrix after each row operation, and (ii) returns a
matrix U ∈ R
n×(n+1) where the left n × n submatrix of U is in the row echelon form. To test
and debug your implementation, please take the worked example in Eq. (7). To get full credit,
you need to print out the intermediate augmented matrix after each row operation.
(b) Implement a function my_solver_v1 by combining the gauss_elim_v1 and back_subs functions implemented above: this function takes a square matrix A ∈ R
n×n and a vector b ∈ R
n
,
and returns a vector x ∈ R
n
so that Ax = b. In other words, my_solver_v1 solves the linear
system Ax = b when given A and b. To test your solver, in the code template, we provide a
randomly generated A ∈ R
300×300 and b ∈ R
300. Please
(i) solve the given 300 × 300 linear system using your solver—we will denote this solution
by x1;
(ii) validate your solution x1 by calculating the relative error ∥Ax1 − b∥ / ∥A∥F
, which
should be very close to 0 if your solver works well;
(iii) call the NumPy built-in function numpy.linalg.solve to solve the given linear system to
give a solution x2. Ideally, x1 and x2 should be the same. Please calculate the relative
distance between x1 and x2, i.e., ∥x1 − x2∥ / ∥x2∥. The relative distance should be very
close to 0 if your solver works well.
Congratulations! Now you have a mature solver for large linear systems!
8
Problem 4. Nearest Neighbor Classification (5 points)
The MNIST (Mixed National Institute of Standards) dataset2
comprises tens of thousands of images
of handwritten digits, i.e., from 0 to 9; check out Fig. 1 for a few examples. Each of the images is a
28×28 matrix. For convenience, we “flatten” each of these matrices into a length-784 (28×28 = 784)
row vector by stacking the rows.
Figure 1: 25 images of handwritten digits from the MNIST dataset. Each image is of size 28 × 28, and can
be represented by a length-784 vector.
Classification here means assigning a label from {0, 1, · · · , 9} to each given image/row vector,
where hopefully the assigned label is the true digit contained in the image. This is easy for human
eyes, but took several decades for computer scientists to develop reliable methods. Today, these
technologies (which can also classify letters, symbols, and so on), collectively known as optical
character recognition (OCR), are hidden in every corner of our digital lives; for interested minds,
please check out this Wikipedia article https://en.wikipedia.org/wiki/Optical_character_
recognition.
In this problem, we explore and implement the k-nearest neighbor (KNN) method for digit
recognition on the MNIST dataset. The method goes like this: we have a dictionary (called training
set) with numerous pairs of (image, label), where the label from {0, 1, · · · , 9} is the true digit
contained in each image. For each given image that we want to predict its label (called a test),
we search the dictionary for the k most similar images (i.e., k-nearest neighbors) and assign the
majority of the labels of those k images to the current test image (i.e., majority voting). To assess the
performance, on a bunch of test images (called test set), we can compare the majority-voting labels
with the true labels. A visual illustration of the k-nearest neighbor (KNN) method is shown in
Fig. 2. We strongly suggest you read this blog article before attempting the following questions.
2Available from http://yann.lecun.com/exdb/mnist/.
9
Figure 2: A visual illustration of the KNN algorithm. Image credit: https://medium.com/swlh/
k-nearest-neighbor-ca2593d7a3c4.
In the Colab file, we provide the training set Xtrain (a Ntrain × 784 NumPy array) and the test
set Xtest (a Ntest × 784 NumPy array). Each row of Xtrain and Xtest is a flattened image. Their
corresponding true labels are ytrain (Ntrain × 1 NumPy array) and ytest (Ntest × 1 NumPy array). In
this problem, Ntrain = 600 and Ntest = 100.
4.1 (1/5) Data visualization Visualize the first and third images (row vectors) in Xtrain, and the
last 5 images (row vectors) in Xtest. What are their corresponding true labels? (Note: this problem
can be solved in one line by calling the provided function visualization(). )
4.2 (1.5/5) Distance calculation Calculate
(1) the distance between v1 and w; (2) the distance between v2 and w,
where v1, v2, w are provided in the Colab file. Compare the two distance values, and explain the
physical meaning of distance in this problem.
4.3 (2.5/5) KNN implementation Algorithm 4 is the pseudocode of the k-nearest neighbor
method. Implement the algorithm and assess performance using the validation code provided;
the validation code compares ypredict and ytest and calculates the prediction accuracy (Note: the
prediction accuracy should be more than 80%). Please use k = 7 in this problem.
To implement Algorithm 4, you will need to use the following two Numpy built-in functions:
(a) numpy.argsort takes in a column vector, and sorts the elements into ascending order, and
returns the corresponding element indices (i.e., sorted indices) as a column vector. For
10

(8)
1 u = np . array ([[1] ,[ -1] ,[2] ,[ -2]])
2 v = np . argsort (u , axis =0)
3 # v now is [[3] ,[1] ,[0] ,[2]] , a column vector (i.e. , 2 -D array with a single
column )
4 v = v . flatten () # This turns the 2 -D array into a 1 -D array
5 # v now is [3 ,1 ,0 ,2]
(b) numpy.bincount takes in a 1-D array with non-negative integer values, finds the largest
integer Nmax, and counts the occurrences of each integer between 0 and Nmax (both ends
included) inside the array. It returns the occurrence counts as a 1-D array of size Nmax + 1. For
example, for an input [0, 1, 1, 3, 2, 1, 7], this function generates the output [1, 3, 1, 1, 0, 0, 0, 1]
because there are one 0, three 1’s, one 2, one 3, zero 4, zero 5, zero 6, and one 7, inside the
input array.
1 u = np . array ([0 , 1 , 1 , 3 , 2 , 1 , 7])
2 v = np . bincount ( u )
3 # v now is [1 , 3 , 1 , 1 , 0 , 0 , 0 , 1]
(c) numpy.argmax returns the index (not value) of the maximum value of an input 1-D array
(when ties occur, it returns the first one)
1 u = np . array ([1 , -1 ,2 , -2])
2 idx = np . argmax ( u )
3 # idx is 2
Algorithm 4 k-nearest neighbor algorithm
Input: k = 7, training set Xtrain ∈ R
600×784 and labels ytrain ∈ R
600×1
, test set Xtest ∈ R
100×784 and
labels ytest ∈ R
100×1
.
Output: ypredict
1: ypredict = −1 ▷ all predicted labels initialized as −1; provided in the code template
2: for i = 0 : Ntest do ▷ iterate over all test images
3: x = Xtest[[i], :] ▷ x stores the current test image as a row vector
4: d = 0 ▷ d ∈ R
600×1
stores the distances of the current test image to all training images
5: for j = 0 : Ntrain do ▷ iterate over all training/dictionary images
6: d[j] = ∥x − Xtrain[[j], :]∥ ▷ distance between the test image and the j-th training image
7: end for
8: Obtain the indices of the bottom k values from d ▷ Try using np.argsort
9: Get the most frequent label of these k training images ▷ Use np.bincount and np.argmax
10: Save the predicted label of the test image in the corresponding index of ypredict
11: end for
11
4.4 (Optional, 3 Bonus Points) ℓ1 norm and vectorization The norm ∥v∥ =
p
⟨v, v⟩ we introduced in the lecture is not the only way to measure magnitudes of vectors, and hence ∥a − b∥ is
also not the only way to measure distance between vectors a, b. Another norm, the ℓ1 norm (also
known as Manhattan Distance) is calculated by
∥v∥1 =
Xn
i=1
|vi
| for v ∈ R
n
,
where |·| denotes the absolute value. This also leads naturally to ℓ1 distance between a, b: ∥a − b∥1
.
Please redo problem 4.3 with the distance in line 6 of the pseudo-code replaced by the ℓ1
distance and run the prediction and validation again. In order to receive full marks, please use
numpy.absolute and numpy.sum functions to write the function l1_norm. This is based on the idea
of vectorization—many scalar operations are broadcast componentwise and performed in parallel
on vectors and matrices, which is used to speed up the Python code without using loop. You can
check out this webpage https://www.pythonlikeyoumeanit.com/Module3_IntroducingNumpy/
VectorizedOperations.html or alike for more information.
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫DTS101TC Introduction to Neural Networks Coursework
  • 下一篇:代寫CanvasList CS 251 Project 3
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗證碼平臺 幣安官網下載 歐冠直播 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    主站蜘蛛池模板: 日韩福利视频 | 超碰在线人人干 | 欧美www视频 | 婷婷亚洲天堂 | 国产理论在线观看 | 自拍露脸高潮 | 狠狠干91 | 亚洲男人天堂视频 | 精品一区二区三区在线观看 | 精品久久99| 爽爽影院在线免费观看 | 日日干天天射 | 国产午夜av | 久久全国免费视频 | 亚洲激情二区 | 福利视频一区二区三区 | 欧美伦理在线观看 | 午夜男人天堂 | 国产 欧美 日韩 在线 | 亚洲精品国产精品乱码不97 | 欧美成人福利视频 | 亚洲美女视频在线观看 | 夜夜躁狠狠躁 | 黄色在线观看免费视频 | 91蝌蚪九色 | 97国产精品久久 | 天堂在线观看中文字幕 | 久久官网| 99久久激情 | 国产视频99 | 日本中文字幕久久 | 色哟哟国产 | 久久久夜夜夜 | 综合图区欧美 | 可以免费看的毛片 | 丁香花免费高清完整在线播放 | 性色av一区 | 欧美一区二区在线看 | 日本深夜福利 | 韩漫动漫免费大全在线观看 | 日韩a级片 | 巨乳中文字幕 | 亚洲成人av一区二区 | 在线播放国产一区 | 可以在线观看av的网站 | 国产精品人人爽人人爽av | 免费黄色小视频网站 | 狼干综合 | 波多野结衣av在线免费观看 | 成人黄色录像 | 91九色在线播放 | 一个色综合av | 天天干在线观看 | 免费中文字幕av | 99热.com | 欧美日韩精品一区二区在线播放 | 成人激情在线视频 | a√天堂中文字幕在线 | 亚洲911精品成人18网站 | 午夜性刺激免费视频 | 久久人人爽 | 九草视频在线 | 国产精品入口夜色视频大尺度 | 精品国产乱 | 日本一区高清 | 欧美九九九 | www亚洲天堂 | 久久久久久网址 | 免费中文字幕视频 | 久久综合一区 | 91精品国产成人观看 | 中文成人精品久久一区 | 日本高清www | 免费午夜影院 | 麻豆回家视频区一区二 | 亚洲视频在线网站 | 性生活视频软件 | 国产特级黄色片 | 插入综合网 | 三级a做爰全过程 | 亚洲经典自拍 | 亚洲精品国产欧美 | 国产suv精品一区二区6 | 97国产精品人人爽人人做 | 亚洲日本在线观看 | 日日干夜| 日韩一级视频 | 亚洲欧美在线免费观看 | 妇女一级片 | 不卡av免费播放 | 国产精品视频免费播放 | 992tv在线成人免费观看 | 国产麻豆精品一区 | 亚洲一区 中文字幕 | 亚洲aaaaaa特级 | 中文字幕一区视频 | 欧美一级全黄 | 国产精品免费精品一区 | www日本高清视频 | 超碰免费91| 国产在线专区 | 欧美人喂奶吃大乳 | 久久人人爽人人爽人人片av免费 | 色噜噜狠狠狠综合曰曰曰 | 日日夜夜国产 | 日韩欧美色图 | 亚洲三级中文字幕 | 不卡av在线 | 亚洲看看| 国产美女在线看 | 天堂中文在线免费观看 | 在线观看你懂得 | 国产夜夜夜 | 国产极品美女高潮无套嗷嗷叫酒店 | 亚洲成人日韩在线 | 91免费视频网址 | 一级免费大片 | 精品国产乱码久久久久久婷婷 | 成人理论片 | 欧美一区二区三区婷婷月色 | 欧美第一色 | 色综合久久88色综合天天 | 99视频网站 | 日韩av网页| 亚洲精品在线网站 | 亚洲精品一二三四区 | 国产午夜精品久久 | 成人在线激情视频 | 午夜影院福利社 | 武藤绫香av在线看 | www男人天堂| 欧美少妇bbw | 五月婷婷开心网 | 中文av资源 | wwwxxx国产| 免费在线观看av网站 | 色婷婷综合成人 | 亚洲欧美在线观看视频 | 欧美一区二区日韩 | 小优视频污 | av青青草| 成人超碰| 黑人巨大精品欧美黑白配亚洲 | 少妇色 | 野花视频在线免费观看 | 精品久久91| 国产精品久久久久久久岛一本蜜乳 | 国产传媒第一页 | 国产大尺度在线 | 波多野结衣精品 | 91人人射 | 91成人精品一区在线播放 | 欧美国产日韩视频 | 天天激情综合 | 国产午夜精品久久久久 | 国产精品久久久一区二区三区 | 天天干夜夜 | 毛片网站视频 | 成年人在线观看视频 | 日日射视频 | 欧美黄色三级视频 | 99产精品成人啪免费网站 | 欧美男优 | 日韩av一二三 | 黄网站免费在线观看 | 久天堂 | 国产一区二区观看 | 欧洲精品码一区二区三区免费看 | 日日夜夜骑 | 神马久久久久久 | 国产免费v片 | 国产精品色图 | 99久久免费精品 | 欧美色就是色 | 我要看一级黄色片 | 精品日韩中文字幕 | 日韩高清一区二区 | 久久成人在线视频 | 国产精品v欧美精品v日韩 | 国产精品国产三级国产a | 天天爽夜夜爽夜夜爽精品 | 综合精品在线 | 在线免费观看你懂的 | 四虎8848精品成人免费网站 | 暴力日本video | 波多野结衣在线视频免费观看 | 在线观看黄av | 一本一道久久a久久精品综合 | 国产日韩在线观看视频 | 一区二区三区在线免费观看 | 免费国产一区二区 | 一区二三国产好的精华液视频 | 成人精品视频99在线观看免费 | 日韩黄视频 | 99爱在线| 亚洲专区欧美 | 97视频免费看 | 一级特黄视频 | 九九看片 | 日韩成人午夜 | 日本毛片在线观看 | 不卡视频在线观看 | 国产高清视频在线 | 欧美一区二区视频在线 | 色播在线视频 | 国产在线免费观看 | 天天做夜夜操 | 亚洲精品一卡二卡 | 午夜黄网 | 亚洲男人天堂视频 | 木下凛凛子av一区二区三区 | 中文精品一区 | 好邻居韩国剧在线观看 | 欧美成网站 | 久久97视频 | 欧美精品1区2区 | 起碰在线 | 天天干天天噜 | 日韩欧美天堂 | 免费观看黄色一级视频 | 欧美日韩免费高清一区色橹橹 | 91porny在线 | 亚洲a精品 | 永久免费看mv网站入口78 | 91精品国产自产 | 国产区二区 | 日韩精品影院 | 亚洲区欧美区 | 自拍偷拍国产精品 | www,超碰| 成人在线一区二区 | 日韩黄色在线视频 | 精品国产99久久久久久 | 美女视频一区 | 国产欧美日韩在线视频 | 天天干天天狠 | 韩国av中国字幕 | 亚洲a在线观看 | 亚洲成人一级片 | 欧美第二页 | 悠悠av| 色哟哟网站 | 亚洲欧美在线一区 | 日韩一区精品 | 色婷婷国产精品 | 亚洲一区第一页 | 91丝袜呻吟高潮美腿白嫩 | 亚洲综合在线成人 | 国产福利一区二区三区在线观看 | 一级看片| 中文字幕一二三四区 | 国语对白永久免费 | 黄色伊人 | 人人亚洲 | 日韩视频在线观看一区二区 | 中文字幕一区av | 横恋母在线观看 | 亚洲欧洲中文 | 国产日韩成人 | 国产精品99久久久久久一区二区 | 淫具馆(重口调教sm)小说 | 欧美久久久久 | 黄视频网站在线 | 久久乐av | 好男人www日本 | 激情成人av| 毛片福利| 亚洲另类在线观看 | 久久亚 | aaa级黄色片| 精品国产免费观看 | 污污视频在线免费观看 | wwwjizzzcom| 国产在线小视频 | 免费看日韩av | 国产精品8 | 1024国产在线 | 最新在线视频 | 欧美日韩国产片 | 我要看一级黄色片 | 女人十八岁毛片 | 国产一区一区 | 毛片视频在线免费观看 | 在线香蕉视频 | 99精品福利视频 | 国产深夜视频 | 色婷婷亚洲综合 | 欧美狠狠爱 | 91精品婷婷国产综合久久竹菊 | 国产成人影视 | 国产免费一区二区三区在线观看 | 久久桃色 | 亚洲女人网 | h肉动漫无修一区二区无遮av | 91成人精品一区在线播放 | 欧美黄色三级视频 | 在线免费观看视频网站 | 免费在线一区二区三区 | 看毛片的网址 | 日本黄色大片视频 | 日韩免费高清视频 | 亚洲插插| 五月综合视频 | 亚洲视频在线免费播放 | 国产一级18片视频 | 欧美日韩另类视频 | 久久久网站 | 青青操在线观看 | www.好吊色| 偷拍老头老太高潮抽搐 | 精品久久久久久亚洲精品 | 日韩欧美国产一区二区三区在线观看 | 亚洲视频在线免费播放 | 欧美午夜精品理论片a级按摩 | www99热| 99色国产 | 国产无套免费网站69 | 激情综合五月网 | 伊人55yiren综合开心 | 国产对白精品刺激二区国语 | 日本精品视频一区二区三区 | 欧美资源在线 | 中文字幕第页 | 亚洲黄色a级片 | 特黄一级视频 | 国产精品亚洲欧美在线播放 | 欧美另类性| 91麻豆网站 | 人人97| 国产亚洲激情 | 亚洲国产视频在线观看 | 91av社区| 人妻毛片 | 91午夜精品亚洲一区二区三区 | 在线黄网站| 不卡的av网站 | 18岁成年人网站 | 久久久国 | av不卡免费在线观看 | 亚洲精品天堂在线 | 亚洲国产毛片aaaaa无费看 | 欧美日韩中文字幕在线观看 | 91国偷自产一区二区三区观看 | 高清一区二区三区 | 日韩不卡在线视频 | 亚洲porn | 日韩av毛片 | 婷婷影音| 欧美色精品 | 亚洲国产精品第一区二区 | 福利片在线播放 | 日本天堂在线播放 | 国产91沙发系列 | a天堂中文在线观看 | 狠狠澡| 九九九在线观看 | 久久免费看少妇高潮 | 波多野结衣一区二区三区在线观看 | 黄色茄子视频 | 夜先锋av资源网站 | 色黄视频| 亚洲精品久久区二区三区蜜桃臀 | 亚洲欧美在线不卡 | 在线久热| 国产精品人人人人 | av毛片在线免费看 | 九色丨蝌蚪丨少妇调教 | 国产精品天美传媒沈樵 | 欧美精品一区二区三区久久久竹菊 | 最近中文字幕在线观看 | 久草日韩在线 | 最新版天堂资源在线 | 已婚少妇露脸日出白浆 | 国产精品久久网 | 色网站在线播放 | 99re国产精品视频 | av成人毛片 | 四虎av | 日本黄色大片网站 | 伊人超碰| 久久亚洲99精品2021 | 国产精品视频网址 | 国产婷婷色一区二区三区 | 黄色在线免费 | 国产黄色免费网站 | 操天天操| 日韩精品免费一区二区三区竹菊 | 毛茸茸日本熟妇高潮 | 日韩在线观看网址 | 浮力影院国产第一页 | 色婷婷免费 | 国产a区| 久久不射网站 | 黄色片视频免费在线观看 | 91插插插插插 | 欧美三级免费观看 | 91免费观看视频 | 欧美日韩在线一区 | 毛片一区二区三区 | 日欧一级片 | 国产欧美网址 | 日本免费成人 | 欧美黄色一级大片 | 国产精品手机在线 | 三级黄在线观看 | 欧美日韩成人 | 天天干夜夜操视频 | 夏晴子在线 | 亚洲一区91| 五月天一区二区 | 国产国产精品人在线视 | 一级在线免费观看 | 日本3p视频 | 亚洲成a人片在线 | 欧美爱爱小视频 | www.天天干.com| 亚洲精品aⅴ中文字幕乱码 一二级毛片 | 精品一区二区三区精华液 | 黄色aaaa| 亚洲婷婷免费 | 久久精品黄色 | 加勒比久久久 | 成年人性视频 | 国产午夜久久 | www.国产成人 | 亚洲v成人天堂影视 | 在线观看一区二区三区视频 | 丁香六月啪啪 | 在线视频精品观看 | 天天射干 | 伊人动漫 | 亚洲综合av一区 | 日本中出视频 | 欧美91视频 | 97免费观看视频 | 男女高h视频 | 亚洲精品免费在线观看视频 | 国产婷婷 | 婷婷啪啪 | 国产日韩在线一区 | 毛片网站免费在线观看 | 国产伦子伦对白在线播放观看 | 亚洲三级免费 | 国产日比视频 | 中文字幕男人天堂 | 国产欧美色图 | 久艹在线视频 | 国语对白做受69 | av网站一区二区三区 | 国产第一页在线播放 | 伊人中文网 | 亚洲天堂日本 | 有码av在线 | 婷婷在线免费视频 | 琪琪色av | 国产精品视频一二三 | 草草在线观看视频 | 色偷偷噜噜噜亚洲男人的天堂 | 就爱av| 欧美日韩亚洲综合 | 成年人在线免费 | 国产肉体xxx裸体312大胆 | 西欧毛片| 先锋影音中文字幕 | 久草免费在线视频观看 | 色偷偷av| 九九热欧美 | 国产精品每日更新 | 夜夜撸影院 | 美女视频一区二区三区 | wwwjizzzcom| 青青草免费观看视频 | 国产 中文 字幕 日韩 在线 | 白白色视频在线 | 欧美国产91 | 亚欧乱色 | 国产精品久久久久久久久久久新郎 | 精产国品一二三产区区别在线观看 | 成人欧美一区二区三区 | 久久人人爽人人爽爽久久 | 国产夫妻在线视频 | 国产在线观看www | 成年人免费看毛片 | 亚洲国产精品一区二区久久 | 丰满av | 亚洲视频国产精品 | 久久久久成人网 | 韩日在线| 在线看成人av| 国产精品一区二区三区久久 | 永久免费中文字幕 | 91av资源在线| 国产又大又粗又硬 | 国产日本免费 | 日本精品三级 | 精品国产乱码 | 播放一级黄色片 | 国产一区啪啪 | 日韩av高清在线观看 | 精品爱爱| 欧美色图12p | 在线观看国产免费av | 亚洲欧美爱爱 | 天天天天天天干 | 亚洲成人系列 | 国产91免费在线观看 | 青青自拍视频 | 国产伊人av | 老外毛片 | 小毛片在线观看 | 久久国产高清 | 日韩网站免费观看 | 亚洲精品a区 | 欧美日韩一本 | 国产福利专区 | 久久精品午夜 | 老女人毛片50一60岁 | 激情四射综合网 | xxxx国产片 | 久久99久久精品 | 91欧美日韩麻豆精品 | 欧美日韩成人免费观看 | 亚洲精品乱码久久久久久蜜桃欧美 | 老牛影视av牛牛影视av | 伊人久久国产精品 | 亚洲午夜精品在线观看 | 毛片的网站 | 东方av在线免费观看 | 男女男精品网站 | 激情欧美成人 | 日韩精品在线一区二区 | 亚洲素人在线 | www.久久艹| 老外黄色一级片 | 久久久久久久97 | 日本天堂在线视频 | 天天鲁| 欧美日韩精品一二三区 | 中文字幕88页 | www.日本色 | 制服 丝袜 激情 欧洲 亚洲 | 精品一区二区三区免费毛片爱 | 一区二区三区欧美在线 | 亚洲成人99 | 91福利免费视频 | 久久精品亚洲一区二区 | 在线永久免费观看日韩a | 伊人自拍 | 国产视频久久久 | 婷婷婷色 | 一区二区欧美日韩 | 欧美日韩高清免费 | www.色天使| 久久久毛片 | 国内精品久久久久久影视8 好吊日好吊操 | 福利社午夜影院 | 手机在线看片你懂的 | 欧美日韩一区二区在线观看 | 久久鲁视频 | 欧美日韩亚洲另类 | 国产日韩欧美在线播放 | 亚洲色欲色欲综合网站 | 95看片淫黄大片一级 | 免费国产羞羞网站视频 | 最新版天堂资源中文在线 | 后进极品白嫩翘臀在线视频 | 国产草逼视频 | 欧美国产在线视频 | 好看的毛片网站 | wwwwxxxx欧美 | 美日韩免费视频 | 国产xxxx岁13xxxxhd| 五月天婷婷综合 | 夜夜操女人 | 涩涩网站入口 | 亚洲乱码国产乱码精品 | 日韩在线观看视频网站 | 一级片免费网址 | 亚洲欧美另类在线 | www.午夜激情 | 永久免费av网站 | 久久九九99 | 樱桃香蕉视频 | 亚洲欧美国产精品久久久久久久 | 日本三级中国三级99人妇网站 | 国产精品天美传媒沈樵 | 色婷婷久久 | 女警白嫩翘臀呻吟迎合 | 国产最爽的乱淫视频国语对白 | 国产精品av在线 | 免费观看一级黄色片 | 天堂网亚洲 | 日韩精品五区 | 女人的洗澡毛片毛多 | 国产一区二区在线视频聊天 | 在线精品亚洲 | 成人亚洲一区 | 悠悠色综合网 | 亚洲国产综合视频 | 亚洲欧美丝袜精品久久久 | 在线日本欧美 | 色www国产亚洲阿娇 韩国中文字幕hd久久精品 | 天天干b| 夜夜爽天天干 | 国产高清99| 成人欧美一区二区三区黑人动态图 | www.haoav| 精品1区2区 | 国语对白91 | 久久机热这里只有精品 | 91视频国产免费 | 五月天六月婷婷 | 黄瓜视频色 | 97国产在线视频 | 91免费精品视频 | 日本免费黄色大片 | 国产一级做a爱片久久毛片a | 亚洲日本香蕉 | av在线毛片 | 国产精品一二三四区 | 在线视频一区二区 | 精品自拍一区 | 五月网 | 天堂免费在线视频 | 亚洲一区免费观看 | 天堂网在线观看视频 | 国产999视频| 日韩欧美中文在线 | 超碰在线99 | 亚洲精品视频中文字幕 | 成人中文在线 | 91伊人久久| 东方伊甸园av在线 | av一区二区三区在线 | 久久精品波多野结衣 | 国内偷拍一区 | 国产精品视频在线免费观看 | 免费国产在线观看 | 黄色aaa网站| 毛片黄片免费看 | 爽爽影院在线 | 182av| 免费成人一级片 | 国产欧美在线播放 | 97操| 97精品在线观看 | 国产又黄又粗又硬 | 超污视频在线观看 | 美国做爰xxxⅹ性视频 | 一本色道久久88综合亚洲精品ⅰ | 亚洲午夜小视频 | 中文字幕av影院 | 欧美大喷水吹潮合集在线观看 | 韩国精品视频 | 一级α片免费看刺激高潮视频 | 婷婷影院在线观看 | 超碰在线人 | 亚洲欧美日韩激情 | 九九九热视频 | 色播av| www.69视频 | 狠狠干免费视频 | 波多野结衣 一区 | 狠狠操狠狠操 | 日韩成人不卡 | 高清不卡一区二区 | 一个色的综合 | 国产亚洲va天堂va777 | 男女免费视频网站 | 国产精品v欧美精品v日韩 | 国产黄色片视频 | 日韩福利视频一区 | 亚洲大尺度专区 | 国产日本在线视频 | 欧美精品久久久久久 | 亚洲欧洲精品成人久久曰影片 | 亚洲视频一区在线 | 亚洲伊人婷婷 | 国模私拍大尺度裸体av | 国产日韩精品一区二区三区 | 久久欧美| 天天撸在线视频 | 小草毛片 | 亚洲第一色视频 | 亚洲国产成人在线 | 超碰最新在线 | 久草网在线观看 | 日韩av一区二区在线观看 | 9l视频自拍九色9l视频成人 | 91精品视频网 | 久久久综合色 | 国产精品自在在线午夜出白浆 | 在线成人免费 | 亚洲一区二区毛片 | 一本大道香蕉在线播放 | av网站免费大全 | 国产精品国产三级国产 | 91久久国语露脸精品国产高跟 | 国产精品一区二区三区免费 | 国产成人av大片 | 亚洲一二三在线 | 在线成年人视频 | 综合狠狠开心 | 国产欧美在线 | 黄色av国产| 国产麻豆精品久久一二三 | 国产一区二区三区在线看 | 在线视频中文字幕 | 久久成年 | 黄色一级大片免费版 | 国产一级黄色 | 黄色片视频免费观看 | 日韩免费观看一区二区 | 欧美肥老妇视频 | 国产a一级 | 一级片在线播放 | 少妇高潮一区二区三区 | 丁香婷婷六月 | www.激情.com| 久久手机视频 | 国产精品美女久久久 | 亚洲精品国产成人 | 69超碰| 日本天堂在线 | 欧美高清性xxxxhd | 福利网站在线 | 二区三区在线观看 | 国产微拍精品 | 毛片a片免费看 | 法国意大利性经典xxxxx交换 | 国产精品久久久国产盗摄 | 婷婷五月在线视频 | 稀缺小u女呦精品呦 | 成人激情四射 | 在线观看97| 国产免费看 | 国产精品视频成人 | 亚洲高清在线视频 | 国产精品久久久精品 | 91社区福利| 天天做天天爱天天操 | 国产视频一二三四区 | 99久久夜色精品国产亚洲 | 91在线精品一区二区 | 久久av资源网 | 樱空桃在线观看 | 亚洲一区中文 | 亚洲黄网av| 欧美激情一区 | 亚洲精品中文字幕乱码三区91 | 亚洲美女激情视频 | 丁香激情网 | 精品免费久久 | 青青草原伊人网 | 欧美永久| 深夜av| 青青草一区二区 | 肉丝美脚视频一区二区 | 色天天综合 | 精品久久久久久亚洲综合网站 | 亚洲成熟少妇 | 国产盗摄精品一区二区酒店 | 久久橹 | 午夜免费看 | 欧美香蕉视频 | 日本www在线| 日韩免费观看 | 国产激情久久久久 | 国产精品第8页 | 给我看免费高清在线观看 | 日本99热 | 亚洲精品一二 | wwwwxxxxx日本 | 国产伦精品一区二区三区视频网站 | 亚洲欧美日韩一区二区三区四区 | 国产精品天天看 | www国产视频 | 亚洲综合视频在线观看 | 欧美成人综合色 | 亚洲精品 欧美 | 一级做a爰全过程免费视频毛片 | 黄色片视频免费观看 | www日韩精品 | 中文字幕第一页在线播放 | 99久久精品无免国产免费 | 亚洲成人资源 | 激情欧美日韩 | 在线观看成人黄色 | 美女性高潮视频 | 中文字幕有码在线视频 | 一级高清黄色片 | 色老头在线视频 | 日本黄视频网站 | 一级视频在线免费观看 | 免费在线看黄色 | 成人欧美一区二区三区 | 99精品网站| 亚洲一区二区三区网站 | 69av视频在线观看 | 久草日韩在线 | 午夜精品视频在线 | 韩国一级淫一片免费放 | 欧美香蕉视频 | 天天操夜夜草 | 免费99视频 | 中文字幕在线免费视频 | 亚洲精品福利网 | 亚洲少妇网 | 精品一级少妇久久久久久久 | 国产一级二级毛片 | 亚洲成人久久精品 | 久久亚洲区 | 国产一级淫片免费 | 91在线小视频 | 精品国产乱码久久久久久绯色 | 自拍亚洲综合 | 超碰碰碰 | 亚洲三级成人 | 欧美日本一区二区 | 日本免费三区 | 亚洲精品无遮挡 | 国产免费福利在线观看 | av秋霞 | 久久精品视频网站 | 91中文字幕在线 | 男女污污视频在线观看 | 黄色片国产在线观看 | 国产在线一区二区三区 | 亚洲欧美综合 | 国产乱人乱偷精品视频a人人澡 | 国产精品视频在线免费观看 | 午夜视频免费看 | 亚洲精品综合在线 | 天堂8中文在线 | 在线欧美不卡 | 小优视频污 | 热久久精| 性色av蜜臀av | 免费激情片 | 91av免费看 | 黄网站免费在线 | 久久午夜夜伦鲁鲁片 | 成年人毛片 | 99久久精品日本一区二区免费 | 夜夜天天操 | 免费成人高清 | av不卡毛片 | 蜜桃臀av| 99久久夜色精品国产亚洲 | 成色视频 | 国产欧美一区二区三区精华液好吗 | 国产一二在线 | 中文字幕av影院 | 一本一本久久a久久精品综合麻豆 | 欧美午夜精品久久久 | 综合人人| 综合五月网 | 免费观看高清在线 | 欧美日韩中文字幕一区二区 | 欧产日产国产精品98 | 青青青免费在线视频 | 色就是色欧美色图 | 国产精品伦一区二区三区 | 国产精品精品国产 | 日本在线观看www | 国产精品二区三区 | 午夜激情一区 | 成年人性生活视频 | 国产精品美女久久久久高潮 | 在线观看免费中文字幕 | 国产高潮流白浆喷水视频 | 欧美脚交 | 中文字幕无人区二 | 伊久久 | 这里只有精品22 | 激情综合亚洲 | 久久精品这里 | 国产精品视频在线观看免费 | 日韩在线免费观看视频 | 中文天堂在线视频 | 国产精品111 | 91蜜桃视频在线观看 | 无遮挡毛片 | 日本激情一区二区三区 | 啪啪五月天 | 色播五月婷婷 | 中国一级片黄色一级片黄 | 亚洲国产精品入口 | 成人中文字幕在线观看 | 天堂色区 | 亚洲综合色站 | 日韩欧美一区二区三区四区 | 日本视频一区二区 | 日日夜夜网站 | 亚洲第一av网 | 亚洲欧美日韩精品久久久 | 亚洲成人av免费在线观看 | 国产精品久久久久久人 | 亚洲精品久久久久久久久久 | 人操人 | 四虎在线视频 | 午夜九九九 | 老鸭窝久久 | 国产在线一级 | 久久精品一区二区三区四区 | 国产51精品 | 久久爱资源网 | 国产裸体视频网站 | 免费午夜视频 | 欧美一区二区视频在线观看 | 日韩精品一二 | 国产又粗又猛又黄又爽的视频 | 成人午夜看片 | 亚洲五月网 | 91久久人澡人人添人人爽欧美 | 性69无遮挡免费视频 | 一二三四区欧美 | 久色网站 | 91精品一区二区在线观看 | 国产三级精品三级在线观看 | 韩国三级一区 | 国产精品一区二区在线 | 亚洲无卡视频 | 伊人狼人影院 | www超碰| 亚洲天堂网在线观看 | 国产在线视频卡一卡二 | 三区在线视频 | 波多野结衣网站 | 91成人短视频 | 欧美日韩精品亚洲精品 | 免费观看黄色一级视频 | 日本少妇久久久 | 欧美黑人做爰爽爽爽 | 亚洲综合久久网 | 美脚丝袜一区二区三区在线观看 | 桃色在线观看 | a级片在线免费看 | 亚洲人午夜精品 | 一级做a爰片久久毛片 | 91网入口 | 黑人一级片 | 精品久草 | 91毛片视频 | 日本在线二区 | 国产福利一区二区三区 | 国产在线二区 | 香蕉久| 亚洲九九色 | 四虎影院国产精品 | 中文字幕av久久爽 | 亚洲激情视频一区 | 久久久影院 | 亚洲乱码国产乱码精品精在线网站 | 国产精品久久久久精 | 久久久国产亚洲 | 91精品国产福利在线观看 | 精品不卡一区二区 | 五月综合激情 | 成人一区二区视频 | 性欧美大战久久久久久久83 | 精品国产一区二区三区性色av | 在线观看你懂的网站 | 欧美日韩视频在线观看一区 | 日韩精品第二页 | 一本大道香蕉大a√在线 | 4色av| 国产又粗又猛又爽又黄的视频一 | 国产成人啪精品 | 九九激情网 | 中文字幕亚洲激情 | 欧美一级片在线 | 就去吻亚洲 | 亚洲女人天堂网 | 91爱爱网站 | www成人免费视频 | 亚洲天堂中文字幕 | 丁香综合| 神马久久久久久久久久 | 影音先锋国产 | aa视频在线观看 | 国内久久 | 精品中文字幕一区二区 | 春色免费视频 | 国产乱人伦偷精品视频不卡 | 亚洲逼| 成人羞羞免费 | 男女午夜视频在线观看 | 亚洲第一免费播放区 | 精品国产99久久久久久宅男i | 欧美色图片区 | 91性高潮久久久久久久久 | 在线观看av资源 | 亚洲精品一区二三区 | 欧美一性一乱一交一视频 | 中文字幕视频一区 | 国产一区二区三区在线免费观看 | 碰在线视频 | 超碰2022|